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1.0 INTRODUCTION

This report concerns an examination of the parameters that
govern the response characteristics of linear, distributed structural systems
to excitation which may be random both over the spatial extent of the sys-
tem as well as in time. Such iﬁformation is fundamental to response pre-
dictions and, - subsequently, to rational structural design in a random
envi?onment. The system properties are those of finite continuous struc-
tures and the excitations principally of interest to the aerospace community.
Specifically, the system is assumed governed by an equation of motion of
the form

my(r, t) + cy(r,t) + Dzy(x,t) = f(z, t) (1.1)

where r denotes a spatial vector, Dr a spatial differential operator, and
f(z, t) an applied excitation. ‘The coefficients m and c are assumed constant.
Three excitations, each an acoustic pressure field, are considered. Their

properties are assumed to be those characteristic of

° a random progressive wave field
® a reverberant field
) aerodynamic turbulence

Our concern focuses upon the parameters that govern the system response

2
spectral density Sy(g,w) and the system mean square response ory(;;).

Now the basic theory and mathematical procedures to solve
the above equation for both the response spectral density and response in
+ : ;
mean square are not new ., This class of problems has been considered

in one form or another by many investigators associated with structural

+The reader is referred to the references at the end of the report.
Although this list is by no means exhaustive, it provides an ample intro-
duction to the subject.



vibrations and acoustics and, not surprisingly, about as many forms of
solutions have been advanced. The notation, method of formulation,
completeness of background theory, degree of approximation, and dis-
play of results vary sufficiently so that it is not always a simple matter
to use such results either to understand or to solve practical problems.
With such variations, the underlying theory so necessary to problem
solving tends to be masked in a profusion of symbols and jargon. This
report represents an attempt to consolidate some of this theory, and

in so doing, perhaps to clarify it as well,

Most important, the results presented here provide an
indication of the expected response behavior of distributed structural
systems in realistic random pressure fields. The theme throughout is
to provide results in the form of functional expressions and/or parame-
tric plots for, in this way, the shown information is applicable to a wide
variety of system problems. For one-dimensional systems, the results
can be applied directly. For systems with more than a single dimension,

the results can be adapted to compatible forms of series solutions.

Although the virtually traditional results for joint accep-
tance functions and the mean square response are included, in addition,
we consider cross acceptance terms and detailed evaluations of the
response spectral densities and responses in mean square for three
typical system functions. For the reverberant and turbulence fields,
conventional filter theory is used to approximate the structural coupling
of such pressure fields, and closed form results thus established for
the mean square response. These '"approximate'' analytical expressions
then are compared with results from numerical integration computations.
Exact integrations are carried out and evaluated for the progressive

wave field,



2.0 BASIC THEORY

This section concerns mainly derivations of the spectral
density function for the response at any point on a continuous system
to distributed as well as discretized random excitation. Before we
concentrate upon such derivations, let us first examine, by way of
review, several formulations of the system response to an arbitrary
deterministic excitation. To reinforce the physical meaning of the par-
ameters and terms used here, much of the theory is applied to solve

illustrative problems for simple systems in Appendix A.

2.1 DETERMINISTIC EXCITATION

Let us assume the vibration behavior of the system is
governed by linear theory, there is no interaction between the system and
excitation, and all shown functional expressions are mathematically

tractable. The damping is termed proportional [6].

2.1.1 Modal Theory

The time history at the position r of the system deflection

y{r, t) may be expressed as the series

y(x,t) = Z ¢j(;)qj(t) (2.1)
j=1

where d)J,(r) is the undamped jth normal mode and qj(t) is the deflection in

the jth normal (or principal) coordinate. Since the mode shapes are ortho-

gonal functions in the spatial variable r,

0, forj#k

dr =
m(£)¢j(l‘)¢k(l‘) x m, for § = k (2.2)

R



where

B

m(r) ¢ (z)dr
S T (2.3)
R

The quantity mj is called the generalized mass.

The undamped normal modes are obtained from solutions

to the undamped homogeneous form of Equation (1. 1)

my(z, t) + D_y(r,t) = 0 (2.4)
This equation conventionally is solved for ¢j(r) by a separation-of-variables
technique subject to the boundary conditions of the system. The generalized

deflections are determined from solutions to the second-order differential

equation

g (6) + e d i) + kayt) = 50 2. 5)

where

2
c.=cC $. (r) dr
] ]

2.6
2 (2.6)
£.t) =] ¢.(r) f(x,t) dz
J J
R
Frequently, Equation (2,6) is written as
2 1
g.t)+ 2% wq.(t) + w.q.{t) =577 f.(t
qJ( ; JC_lJ( ) JqJ( oy J( ) (2.7)
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where

k.
‘-'J? = __J__
m
g J
(2. 8)
C.
2{ w, = "—‘]—.
i ™
By the convolution integral
t
At) =] h. (o) (t-a)da
qJ J J (2.9)

0

where hj(a) is the response of'the jth single degree-of-freedom system to

a jth unit impulse forcing function and a@ is but the variable of integration.
Consistent with the "generalized' terminology, cj is termed the generalized
damping, kj the generalized stiffness, fj(t) the generalized force, wj the jth
modal frequency of the system, and ;j the damping factor in the jth mode.
Since the form of Equation (2. 5) is that of a single degree-of-freedom system
(or a mechanical oscillator, if you like), the modal series solution may be
considered as a transformation which converts the physical system into an
equivalert set of modal oscillators, infinite in number, and where the output
of each oscillator is weighted by its corresponding mode shape. The response
of the physical system at r thus can be represented by a summation of outputs

from each of the modal oscillators, each such output weighted by 4>J.(_1:)

evaluated at r.



2.1.2 Impulse Response Formuation

This method reflects an extension to multidimensional systems
of analysis procedures frequently used in network analysis; it sometimes is
termed a Green's function approach. Central to the formulation is the space-
time unit inpulse response (h(z, s, t); this function describes the response time
history of the system at r to a unit impulse excitation applied at s. By con-

volution in time and superposition over space [14],

t
y(z,t) = h(r,s,n) f (s,t -n)dn ds (2.10)
0
and, alternatively,
o
y(z,t) = h(z, s,7M) f (s,t -n)dn ds (2. 10a)
R-o

since b(x,s,t) = 0 for t$0. The system function H(zx, @, «) and h(g, s, t) are

related as the Fourier Transform pair

h(?::: §:t)<—'>H(:£, S,w) (2. 11)
where s
- t
H(z, s,w) = h(z, s,t) e 1 dt (2. 12)
—o0

Note that H(r, s,w) is amenable to experimental measurements and, in contrast
to the series representation of modal theory, appears somewhat simpler in

in this functional form.




Lot

2.1.3 Transform Solutions
The transforms considered are linear transform pairs of
the form
f(t)e——sF(N) (2.13)
where
22
F(n)= K(t,m) f (t) dt
1
b
2
= t F d
£(t) H(t,n) F (1) dn (2. 14)
bl
Here we concentrate upon the Fourier transform pair *
[=0]
-iwt:
F(w) =} f(t) e dt
= 00
(2.15)
o0
1 iwt
£(t) = 5= ] F(w)e dw
- 00
and make token mention in Appendix A of the Lapace transform pair
~ btico
-st 1 t
F(s)= [ ft)e 5tat, ft) = 725 | TF(s)e " 'ds (2. 16)

b <1eo
0

#*This pair seemingly is popular with circuit analysts and mathe-
maticians. Since placement of the 2w term and sign of the exponent
is a matter of choice, various equivalent forms are used through-
out the literature.



For our purposes, we potentially can use any one of

the three transform pairs

y(z,t) -— e Y(r,w)

(2.17)
y(z,t)= —Y (k, t)
Y(E:t) A:';Y(l.%w)
Note the last pair defines the double transformation
®© o
-i(kr +wt
Y(k,w) = y(g,t)e ik +o )d5 dt
(0 =D
(2.18)
0 @
L i(kr twt)
y(z,t) = (2m)? Yk, wle =R TMak de
- CO == CO

where Y(k, w) describes a wave number-frequency response function. Such

a formulation lends itself to interpreting a distributed structural system as

a filter with selectivity characteristics dependent upon both spatial wave-
number and frequency. The n;.ultiplicity of integration defined by

Equation (2. 18) depends upon the dimensions associated with the spatial
variable r; for example, a two-dimensional structure, such as a plate,
requires a three-fold integration to compute Y(k,w) whereas a one-dimensional

structure such as a beam, requires but a two-fold integration.



By the Fourier transform of the equation of motion

Y(k,w) = H(k,») F(kw) (2.19)

where the system function H(k,w) is of the form

H(k,w) = (2. 20)
D, ~wm+icw

=

and the wave number~-frequency description of the applied excitation is

given by

@® o

-i(ky tuwt)

Fk,w) = f(x, t)e dr dt (2.21)

«=CO w0

Conceptually, Equation (2.19) constitutes a solution for the system response
to an arbitrary deterministic loading in the wave number -frequency domain.
For a space~time description of this response, Y(k,w) is converted to y(g, t)
by the inversion integral of Equation (2. 18). Although very compact in form,
be forewarned that the evaluation of such integrals frequently represents a
nontrivial and/or tedious mathematical task for practical problems. This
comes about, in part, due to the finite transforms that are encountered

when dealing with finite structures.




2,2 RANDOM EXCITATION

Let us make several preliminary remarks at the outset.
Correlation functions (or, equivalently, their spectral densities) are
representative of second statistical moments. For Gaussian processes,
only the first two moments are necessary to describe the statistical
properties of the process; for Gaussian processes with zero mean, only
the second moment is required. We also recall that the resultant output

of a linear operation on a Gaussian process is itself Gaussian.

If the input f(r, t) is termed random or stochastic, this
function may be random either over the spatial extent of the structure
or/and in time; that is, both r and t may be random variables. Since a
linear system acts as a linear operator on the input process, the response
process y(r,t) is random; its properties are governed by the system
characteristics of the structure and the stochastic nature of the excitation.
Thus, to characterize the output process, considerations of correlation
functions, spectral density functions and mean square response values

naturally arise.

2.2.1 Distributed Random l.oadings

Let us examine the various forms we may choose to charac-
terize an input loading. Consider £(gx,t) when the excitation is said to be

nonhomogeneous and nonstationary. The correlation function is of the form
R(z,z't,t.)=E [f(z.t.) (= t.) (2. 22)
et S ~171T el 2 *

where E[ ]is the expectation of[ ] This expression implies
ensemble averaging over all combinations of spatial locations and time;
such represents a most formidable task, at best. We know from the

Wiener-Khintchin relation that a correlation function and its associated

10



spectral density are related as a Fourier Transform pair. So, in a

very general sense,
Rf(,1:9 El:ti’tz)«ﬁsf(k: k"’wi’wz) (2.23)

The quantity Sf(_‘k', k!, @ \.02) is called a generalized power spectral
density or multi-dimensional spectra of the input excitation. It is
noted here as a two-sided cross spectral density functionally dependent
upon the wave numbers k and k', and the frequencies wy and w, For

a one~dimensional structure in the spatial variable x,

ﬂ ©
1 itkx-k'x! twt, -wt.)
1 = — PP 1
Selk, k', ,0,) (zﬂ)—/ fRf(x,x,ti,tz)e 11 7 2°2dx dx' dt, dt, %
(o]} - D

(2. 24)

@ [=o]
1 = feeuo 1 . -ifkx -k'x! tot, -wt))
Rf(x,x ’ti’tz) —/ f Sf(k,k s @y wz) e 11 Zafz dk! dwidwz
-0 -CD

where the spatial integrations are taken over the extent of the structure
(in this case, the length). If a two-dimensional structure were assumed,
the integrations implicit in Equation (2. 23) would be six-fold; four for

the spatial coordinates, and two for the time variable.

Now any consistent set of variables can be selected to
establish a ¥. T. pair. Since all such sets provide basically the same
information, it should be clear that no set inherently is more '"correct”
than any other although, admittedly, some forms may prove mathematically"

more convenient than others. For example,

R

1 1 2. 25

11
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yields Sf(;, r', wl,tz) as a time varying cross spectral density function
while

t (2.26)

2 2)

Rf(}:: x', ti’ t,)e—— Rf(.]’S’ k', t
defines Rf(l.g, k', tl, tz) as a nonstationary wave number-time correlation
function. Practically, the format used is dictated by costs and comprises
associated with instrumentation, experimental tests, data processing,
and mathematical form of the prediction model. Simply, there is no
"best'" format for all problems. It is appropriate to mention here that
fast transform techniques permit the rapid computation of spectral
quantities directly from measured data. Correlation functions, likewise,
can be determined from the raw data although, due to fast transform
procedures, it frequently is more efficient to compute such functions

by taking the Fourier transforms of their respective spectral densities.

If we assume the process (g, t) is stationary, then the
statistical properties in time become dependent only upon the time
difference T = t ~t. so that the generalized spectral density function

2 1
of the input  f(z,t) is

Sf(l.Ss k"w) - ARf(I: .r,,’ T) (2'27)
where

Rf(g,’ls', T)=E [f(}:,t) f(g,t+ T)] (2.28)

12




Now if the process is ergodic as well, we can replace this ensemble

average by

T
lim 1
Rle, 2", 7) = 1, f(r,t) £ (2"t + 1) dt (2.29)
2T
-T
and for the spatial location L,
T
R(x ,T)= bm = 1 flr ,t)f + (2.30)
-T

where R f(;o, T) is simply the autocorrelation function of a stationary

forcing function evaluated at zo

If the process f(zr, t) is assumed homogeneous, then
the statistical characteristics over the space of the structure become
dependent only upon the spatial difference u = g'-r and the generalized

spectral density becomes of the form

i ——tererere—— .
Sf(lﬁ,wiswz) Rf(E’tl’tZ) (2.31)
where
R (g, t,.t,) = B [f(r,ti) £(r+u, tz)] (2.32)
If the process is assumed isotropic, then E_-»lr'-rl =1 and
R (ut,t )= 9™ Lof e ey e(r+ut.)dr (2.33)
£ 72 R—A R ’ ’72 )
R




Further, if Rf(u, tl, tz) is assurned ergodic, then

T
lim
Ro(u,t,,t,) — Rlu,7) = 2?111_12‘/:/[f(r,t) £ (r+u, t+1)dr dt (2.34)
R—A
-T R

and the generalized spectra is

S (k) =- R (u, 7) (2.35)

Thus, ergodicity allows time averaging of a single record to define
the statistical nature of the time characteristics of the process whereas
isotropicity allows a single set of spatial averages to account for the

spatial characteristics. For reasons principally related to costs for more

exacting measurements as well as experimental and data reduction pro-

grams, it is almost traditional (at this point in time) to assume the

input excitation as both homogeneous and stationary. Recent advances [1]

concerning nonstationary properties should prove of value, however.

By way of a simple illustration, consider now various
functional representations of a pressure field obtained by a speaker
(energized by bandwidth limited white noise) directed at normal incidence
to a flat rigid surface. Assuming no near field effects, the excitation
which impinges on the surface is a stationary, isotropic plane pressure
wave at normal incidence. The space~time correlation function for this
random pressure wave may be depicted as shown in Figure 2. 1(a). Other

equivalent descriptors are represented by Figures 2. 1(b), 2.1(c) and 2. 1(d);

14
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{a) Space - Time Correlation Function

u

Rf (k,T)

(b) Wave Number-Time Correlation Function

FIGURE 2.1 RANDOM PRESSURE WAVE AT NORMAL INCIDENCE
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Gy (u,w)

—m— ()

(c) Cross Spectral Density

G (k, w)

(d) Generalized Power Spectra

FIGURE 2.! RANDOM PRESSURE WAVE AT NORMAL INCIDENCE
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these, in turn, are related to the space-time correlation function by the

Fourier transformations

R (a, ) R (k, 7)
R (u, T)—+G(u,w) (2.36)
R (u, 7) Gk, w)

We recognize the notation Gf(u,w) denotes a one-sided spectral density in

w; it is related to Sf(u,w) by folding the w-~axis of this two-sided function so

that
G (w,w)=2 S _(u,w), forw=0
£ £ (2.37)
= 0, forw=<20
2.2.2 Mean Square Response Formulations

Let us direct our attention now to the development of
expressions which, when evaluated, lead to the mean square response of
the system. The mean square response at any location r of a linear

distributed structure to stationary random excitation is given by

[e0]

2.38
ey’ n] =0l @= [ s e (2-38)

-0

where Sy(;:,w) is the ordinary spectral density of the response y(g, t).

Since

(2.39)

R (l‘,T)"—‘_“S (S;w)
y '~

17



it follows that

2
v, () =R (2.0 (2.40)

2
Since the key to computing cry(;;) is the spectral density Sy(;;, w), let us consider
a formulation of this spectral function.
Our approach is to establish a space-time correlation

function of y(g, t), take advantage of certain functional relationships

associated with a linear system, then take the Fourier transform according

to the Wiener -Khintchin relations., Consistent with this approach, the space-

time correlation function for y(r,t) assumed ergodic is

T

i 1
RY(E,T) i y(z, t)y(z, t+7)dt (2.41)

For a modal representation such as that of Equation (2. 1) with the response

q.(t) written in terms of the convolution integral
J

At) =h (t)*f (t)= | h. f(t- ) .
qJ(t) J(t) J(1:) hJ(Tl) J.(’c n)dn (2.42)
it follows that
R (z,7) =Z Z $,)8, () [ [ Byle) () Ry (v + @ -n)dadn (2.43)
j=1 k=1

18



where

lim 1
- - — - 4+ - dt 2. 44
Rjk(-r+a/ n) Tw 2T fj(t a)fk(t T-1) ( )

-T

We note the form of Equation (2. 43) is that of a double convolution in T;

thus, it can be expressed more compactly by

© © . s h (1) % R..(7) (2.45)
R (5, 7) = ) D> oi(£)e(x) hyl-m) * Iy (1) * Ryl
j=1 k=1
where
T
lim 1
= f (t+T)dt 2.46
Ro() = qig pp | 0 (600 (2.46)
-T
For a linear system,
h, 1 H.(w 2.47
) L, B (2.47)
m, W,
NN
where the modal magnification factor ﬁj (w) is defined as
H (w) = 1 (2.48)

19




In expanded form, the Wiener-Khintchin relations defined

previously as Equation (2. 39) are

o
S (r w) - _1._ R (1‘ T)é-lw'r ar
y'=? 2T
-0 (2~4-'9)
w
R (£, 7) = S (r,w)e "“Tdw
o

By the time convolution theorem [9, pg. 26], the F. T. of the convolution
of two functions, say fl(t) and fz(t), equals the product of the F. T. of
these two functions. By @&pplying this theorem to a double convolution

in 7, the F. T. of Equation (2. 45) produces

zz ()8, (5) HL (@) B (0) S () (2. 50)
{1 k=1
where
1 j—
H(w) = w
() o2 H)
j
(2.51)
Sa(@) = ¢ (r)e (r') Sylr, 2", @) dr dr!

R

The quantity Sf(_l;, I',w) is the cross spectral density function of the

distributed random loading.

20



It often is convenient to normalize the modal cross spec-
tral density by dividing by the surface area of the region R and defining

the cross spectral density function

cf(.r,.;r,w) 5 koo (2. 52)
so that
S (w)=AZS(r w) T, (w)
jk o' o’ jk (2.53)
where
1 A
ij(w) = 32 ¢j(s)¢k(g') Cylr,z',@) dr dr! (2.54)

R

A
The density function Cf(g, r',w) is termed a normalized cross-spectral

density function or a narrowband cross spectral coefficient. The

cross acceptance function ij(w) provides a measure of how well the
random excitation couples with the structure because of the spatial charac-

teristics of both the loading and the structure.

Now Equations (2. 38), (2.50), and (2.53) collectively
emphasize a distributed linear structure acts as a filter with selectivity
characteristics both in space and in frequency (time). Accordingly, the output
response of such a filter is dependent upon the nature of the input loading
and both the spatial and frequency characteristics of the filter. A system thus

may be excited into '"resonance' either in space or in frequency, or coin-

21



cidentally in both space and frec;_uency'. Simultaneous resonance in both
space and frequency is termed "coincidence'. To predict the system output
response to a random distributed loading, in addition to the system rep-
resentation, we require a statistically meaningful description of the manner
in which the loading is distributed in space and is applied in time; namely,
the cross spectral density Cf(?\c, x';w). For a deterministic loading+,

we need an explicit representation of how the loading is <’iistributed

over the structure and how it is applied in time; namely, f(z,t).

Consider the form of the spectral density Sy(;g,w) for
a continuous structure with discretized, stationary random loadings.
The desired result is that of Equation (2. 50) with Sjk(w) altered to
account for a set of 'n' pointwise inputs. If we represent such a

loading by

£(x, t) =zf(g,t) 6(r-r ), r=1, 2, 3+een (2.55)
r

then the modal cross-correlation function defined by
T
lim 1

R0 = T £(8) £, (t47) dt (2. 56)

-T

This can be seen easily by an examination of the properties associated
with the generalized force fj(t) and the solution for the normal coordinate

qj(t)-

22



reduces to

n n
Ry =" D oz ) G ) Rylx oz, 7)

r=1 s=1
where
T
R(x,r,r)= oo L f(r ,t) £ t+T) dt
7’2527 T e 2T Xy (Ss’ ™)
-T

By the Fourier transform
R (1) == 5, («)
the modal cross-spectral density becomes

n

n
Sp@) =0 > bulr ) by (x)) Sz Lz, 0)

r=1 s=1
since

Rf(rr’? ’T) ~— Sf(’l:r’ xs!w)

23
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2.2.3 Properties of Special Interest

In the previous section, formulations of Sy(x,w) and 0'5_(}'_)
are presented for distributed linear systems and nonhomogeneous,
stationary loadings. Theoretically, we can argue this class of problems
now has been reduced to two operations, both mathematical in nature,

that of
(] developing the required integrand function
© carrying out the stated integrations

As we shall see later in this report, even with the simplest of structures
and not overly-complicated representations of random pressure fields, the
evaluation of the integral expressions simply is not a casual exercise in
mathematics. Although a precise evaluation is desirable from a theoretical
point of view and practically advantageous as well, assumptions frequently
are made to provide !"quick order-of-magnitude estimates' of response
levels. Such assumptions are physically plausible and essentially reduce
the cornple};:ity of the integral expressions so that the required mathematical
operations can be carried out withease. Let us mention some of these

approximations and special situations as well,

To remove from consideration the off-diagonal terms in the

summation for Ufr(L)’ we assume a lightly damped structural system where

® the modal frequencies are sufficiently separated so
that

2 ale
H(w)| > » IH”-
‘ J( ) e J(w) Hk(w)
® the mode shapes and force field are such that

.]'j(w) >> J'jk(w)

® the force field is such that its frequency charac-
teristics are nearly constant over w
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For such conditions, the off-diagonal or j # k terms become negligibly

small so that

& 2
Sylee) = Zi o e | s e (2.62)
J:
where
Sj(w) = ¢j(£‘)¢j(£') Sf(;, r',w) dr dz' (2.63)
R

The mean square response then reduces to the form

2 = 2 2
= > w (w) dw (2.64)
° () .Ei ¢, (@) |HJ.( ), sJ.( )
J:

-

2
Consider the above form of o‘y (r) for two extremes of
spatial correlation for a random loading with white noise time charac-
teristics; that where the loading is correlated uniformly over the

structure as well as that where the loading is uncorrelated perfectly in

space. For an isotropic loading correlated as a constant over the extent
of the structure, such as for a random pressure wave at normal incidence,

the cross-spectral density reduces as

Sf(r’r',w) S

(2. 65)

(o]

and

. 2 (2. 66)
Sj(w): S, [[¢j(r) dr] .
R
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The mean square response is given by

o]

2

2 > L2 2 (2. 67)
o (,r,)zsoj_z1 ¢ (1:)[ ¢j(£)d£] |Hj(w)| dw ~
R
-
where
w0
2

Q.
lHj-(w)| do = fillas (2. 68)

m.2w3

J 3

-
so that
b, (r) dr >
2., id /JN ~ - (r) Q.
o5 = 7S R . ¢, (1) 9y (2. 69)
j=1 m. w
J j

Now for a completely uncorrelated loading over the extent of the structure,

such as that for raindrops on a roof,

Se(zs r',w) S & (z-z") (2.70)

and
Sj(w) - S ¢;_2(£) dr (2.71)

R

so that for a structure with uniform mass distribution

@ 4’ (r) Q (2.72)

q
1t
O
“;M
Bul




because

2 m,
¢ (r)dr = —L
j o~ e m

R

(2.73)

Pictorial representations of such loadings are shown by the sketches of

Figures 2.1 and 2,2

In test specification and vibration prediction work, it

frequently is required to estimate an ''average'' response level for a

structural zone. This may be accomplished by

(03277 - 4 /qfr(;)d;_
: R

(2.74)

which, due to orthogonality properties of the normal modes, reduces to

f‘?jz(x) dr 2

L Jes]

For uniform structures with simple harmonic mode shapes

$(x) = sink.x , wherek, =T
j j i 2

the generalized mass and integral of the mode shape are

2 0, i=2, 4 6, 0 0 s
fq;J,(x) dx =
0
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Then for the spatially correlated white noise loading,

5 8s ® Q.

oS> =220 z —_ (2.78)
y 2 .2 3
rm j=1,3 J wj

and, for the spatially uncorrelated case,

2 Q.
<0'Z> = Z —-']"3 (2.79)
Y j=1l w,

J

In a more general sense, let us go back and assess the

relative magnitude of the off-diagonal terms of Sy_(};,w) for each of the two

previous loadings. For the spatially correlated case,

S (@) = S, /¢j(z) dr °]¢k(:') dr' (2.80)
R R
and
5 (i=k) 5 2 2
o () =S, z ¢ (x)[/‘?’j(r)dx] |Hj<w>| dw
j R
co (2.81)
(k)
ZZ #.(x) ¢, (2) -/¢ (r) 4z » f¢ ez | H ) Hy(e) ao
j R
By residue theory with a, = w,(l-gz.)l/zand b, =fw,
i) j i
b. +b
H(w) H (0)de = —I ik (2. 82)
] k m.m

2 2 272 2
k [a .- -(b.+b + 4a (b.tb
j (a%m2y )-(b;+by) "] S(bb))
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and a relative measure of the importance of the j # k terms is offered

by the ratio (where mj = mk)

[=s]

% 2
16 b,(b.+b b
2 ij (w) H, (w) do J( j i) (aJ Jz)

-0 —_

(2.83)

12 22 292, 2 2
ﬁHj(w)l dw [(aj-ak)-(bj+bk) ] +4a(b tb,)

- 0

Figure 2.3 shows the behavior of this expression by a family of curves

in modal damping with Qj =g Kk

For the spatially uncorrelated loading, the cross-meodal

spectral density is given by
S w S ¢ ¢ d (2.84)

and, due to modal orthogonality,

0, for j# k

S.. (w) = (2.85)
fq; (r)dr, for j=k
2
so that the expression for o-Y (x) reduces to Equation (2. 72) which is void of

j # k terms.

As our last special topic, consider the situation where the
spectral characteristics of the input are those of bandwidth limited noise in
contrast to those of pure white noise. For this condition, the mean square

response is written as

w

C
NOE fsy(.z;,w) dw (2. 86)

-
C

30



—
|
| |
: £ = &= 100
} ! ——— L = {,= 025
.L= ----- L = L= 00
I ‘
|
J“l
| !
L
3 u i
w® IR
N
8—:5—8 ‘ \
\3' .5 !‘
RN
= |
~ |
3
2 1
8\‘? ‘ \
o ‘ \
‘ \
|
|
-\
\ \
1
L\
\
\ \
\ \
\ ~
\\\ S~——
(0] —+ S } + —— o
1.0 1.5 2.0
FREQUENCY RATIO  w, /w;

FIGURE 2.3. RELATIVE EFFECT OF OFF-DIAGONAL MODAL TERMS

31



where W, is the cutoff frequency of the input noise. For a constant
spectrum over the bandwidth of the input, our previous work is altered

only in that

@ Ye
H. (w) Hy (0)de —> H, (w) Hy () do (2.87)
J
- C0 /-Q)C
and, for the j = k terms,
w
c
> T Q.
[H.(w)[ dw = —— 1 (2.88)
] 2.3 j
m. w
J
where
a
4
1= 45 IH.(w)[Zdw (2.89)
J J
T
o
with a = wC/wj. - Upon integration, the quantity Ij reduces to
2 2. 1/2
q -1 Zaéj ¢, 1+a +2a(1-‘t;j) /
I = — tan + > In (2.90)
j 1/2 2 2. 1/2
;] T 1-a° zn(i-gj) / 1 +2a° - 2a (1-gj) /

The behavior of this function is shown by Figure 2.4 as a family of curves
in the modal damping factor { .. Note the curves depict the system function
lH_(w)l as a highly selective bandpass filter in w for small values of ( ;

it Jadmits. frequency components centered about and approximately eci]ual

to w, and rejects the components where wC/wJ_ >1.
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2.2.4 Cross-Correlation and Related Spectral Density Function

Let us consider now the correlation function and the
associated spectral density between the input excitation f(g,t) atr = z,
and the response y(z',t). The desired cross-correlation function is

defined by
T

lim 1
1 = — 1 + .
Rfy(xo, £hT) = e ap [ EE (e tT)dt (2.91)

-T

Upon substituting the modal solution for y(x',t + T) and rearranging the order

of integration,

o]
! = ! n FS 2.92
Reglxsx'sm) z ¢j(z )/¢J.(1: ) [hj(T) Re(x ;_“,T)]dg' ( )
J=1 R .
where
T
R(r ,r%T)= Lim 1 f(r , t)f(" t+7)dt (2.93)
[ Adate Mkadid T—swo 2T o’ = °
-T
Since
1 1
Rfy(l‘o:,l;,"') - Sfy('l:o’ {_:w), (2'94)

the cross-spectral density becomes

Spy(Tgr EH0) = D .(x) Hiw) / LS ,lr, 2% W)E  (2.95)
j=1 R
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If the input loading is discretized according to Equation (2. 55),

then
n
v ] 1= 2.96
f $(2" Sz, £'e)r SZIdgj@S)sf(;o, r_,®) (2.96)
since
T
> 1
=14 .
RALSENT) = D mimsm [z, 6@ thr)at s(ghz ) (2-97
s=
-T
Therefore,
@ [o o]
' - 2.98
Sy (o, Eh0) =D S(LIH() D (2 05 (x £ ,00) (2. 98)
j=1 s=1
and for a single point loading at r = £,
oo}
= 2.
Sy (5gr £12) = Sz g0 8z,) D, byl )y (x!)H (). (2.99)
j=1

where Sf(ro,w) is the ordinary spectral density of the input excitation at

r .
~0

It is useful in some applications to know the cross-correlation
function or the cross-spectral density of the response measured at two differ-
ent locations, say y(xo, t) and y(g,t). Such a cross-correlation function

for a stationary process is noted by
T

limm 1

= 2.100
R(xpz 7= 57 [Yizg tylp thm)dt ( )

-T
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By using modal theory and paralleling the development for Sy(‘t’w’)

used earlier in the text,

Ry(zo, r,T)= z Z ¢j(zo)¢k(z) hj(-T)*hk(‘r)*Rjk('r) (2.101)
j=1k=1
Thus,
R(z,z,7) =— S (r,r,v) (2.102)
y o y o
and
S (L, £,9) = j;él¢j(;o)¢k(;) H, (@) Hy (o) S (o) (2.103)

where both Hj(w) and S,k(w) are those previously defined,
J

2.2.5 Alternate Formulations

In the previous sections, we have developed formulations
using modal theory and Fourier transforms. Direct use of the system function
provides alternate and frequently quoted formulations. For completeness,
let us make token mention of such results. By substitution of the response
y(zr, t) defined by the convolution integral into Equation (2.41), the Fourier

transform of the resultant expression provides
sy(r,c'o) = //H’"(,r_, g,«) Hlx, 8 w)S (s, 8',) dg dg'  (2.104)
s s'

similarly,

% 2.105)
SY(IO’ E:W) = // H (IO’ 8,w) H(Ia gt w) Sf(§: %,"w)df ds (
s s'



For 'n' discretized loadings,

n n
S (.1::‘*’) = zsz(I: .§j:‘-") H(Z’ Ek’w) Sf(?"j’ S ) (2.106)
y T %
n n
S (£gr 220) = . > H (5, 80) H(E 200) Selap g,00)
J k

where both summations extend over the range 1 ... 'n'. Since the
structural characteristics are defined as continuous functions over

both space and frequency instead of by an infinite modal series, these
expressions appear more compact than the equivalent modal formulations.
Such is intuitively satisfying. Practically, the development of such
system functions is not without measurement and computational diffi-
culties; moreover, the resultant double integration, as with that for

ij(w), will prove somewhat taxing to carry out for practical excitation

fields.
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3.0 RESPONSE TO SELECGTED PRESSURE FIELDS

Since the intent here is exploratory in nature, our
concern focuses upon the forms of the expressions which govern the
response of a structure to each of three pressure fields adjudged of
interest to the aerospace community. Such forms are fundamental
to any rational effort in design and in response prediction for a structural
system immersed in a random environment. ILargely to simplify the
mathematics, we choose a structure of one dimension with harmonic
mode shapes. Let the pressure fields be characterized by the

normalized cross-spectral density functions

b Cf(x, x',w) = cos [Ko(x-x‘) cos 9]

sin K(x-x'")
® 1 = 3.1
C (x, x',) Koa) (3.1)
-oK | x-x" -
* Cf(x:x'sw) = e |- |cos K (x-x')

where the wave numbers KO, K and K are

K = wo, K= w, K= w (3.2)
UC

C C

These normalized cross-spectral densities imply homogeneous, stationary

random loadings and correspond physically to

L] a random progressive wave field
o a reverberant pressure field
® aerodynamic turbulence

Let us now apply the theory developed in the previous section.
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To paraphrase some of our earlier remarks, we seek
2
Sy(x,w) and cry(x) for each of the three pressure fields. The mean

square response is given by the integral

O‘Z(X) = j S (x,w) dw (3.3)
y Yy

—@

We choose to represent the response spectral density in its two-sided

form

5, (3,w) Zg ()6 () H, () H () S (o) (3.4)

and the modal cross-spectral density by

Sjk(w) = LS (xo,w) ij(w)
where
=72z ff¢j(x) ¢k(x') Cf(x, x', w) dx dx! (3.6)
o 0
We further assume harmonic mode shapes of the form
¢j(x) = sin ij (3.7)
where the structural wavenumber kj is given by
k.:{l, j=1, 2, 3. ... (3.8)
J
and the associated modal frequency wj by
w, = T2z (k 2)4
J mf J
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The computation of the mean square response, therefore, reduces to

two tasks for each pressure field:

] evaluating the spatial integral associated with ij(_w)
)] performing the spectral integration associated with
2
o (%)
y
3.1 JOINT AND CROSS ACCEPTANCE CONSIDERATIONS

For homogeneous pressure fields,

Cf(x,x’,w) —_— Cf(x -x', w) (3.10)
so that for our problem
£ £
1
ij(w) = 27' j / Cf(x-x',w) sin ij sin kkx' dx dx!' .(3. 11)
0 ©

This double integral can be expressed in terms of a single integral function

by means of the relationship [13]

//f(x,x') dx dx‘:/f f(u, v) IJ' du dv (3.12)
R R!

where the Jacobian is given by

9x ox!
(7] = du ou (3.13)
o0x ax!
ov oV
with the coordinate transformation
= - ]
s xTx (3.14)
v = x+x!

These relationships serve to map the area of integration R in the x-x' plane

into the area R' in the u-~v plane as shown by Figure 3.1.
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Thus, we can write Equation (3. 11) in the form

- lul

J (w) = —f / C (u w) 51n k (u+v) sin = kk(v-u) dv du (3.15)

and for Cf(u,w) a symmetric function in u, .
//
1
J (W) =— C.(u,w) K. (u) du (3.16)
jk 20 / f jk
0
where
240-u

Kjk(u) = é‘ f cos - (av+bu) -cos T (bv+au)
a

(3.17)
1 1
+ cos g (-avtbu) ~cos > (bv-au)| dv
with
a = - k
TN
(3.18)
b = + k
R
Upon integration of Equation (3.17),
Kjk(u) = Ajk [cos kju + cos kkuJ
T (3.19)

B [ . + si
+ ik sin kju sin kku ]

n . s
Cjk [51n kju sin kku ]
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where the coefficients are given by

0, for j# k
Age =
2, for, j= k
(3.20)
B, =_4 [1+(-1)J+kJ
J (G+k)m

2 itk
Cp =T L 1D ]

The cross acceptance terms then take on value according
to whether the sum j + k is either an odd number or an even number. For
j + k odd, Ajk = Bjk = Cjk = 0 so that Kjk(u) = 0 and ij(w) = 0.
Such behavior can be anticipated inasmuch as we note the mode shapes are
even and odd harmeonic functions referenced to the mid-span of the struc-
ture. Likewise, the pressure fields are characterized as symmetrical
real functions in x-x'. Now products involving even and odd functions
are odd, the resultant integration of an odd function over the space of
the structure is zero; those products involving either both odd or both
even functions are even, the resultant integration of an even function

over the space of the structure produces a value. The sum j + k odd

implies an integration of an odd function so that J,k(w) is zero, as expected.
J

For j + k even, the coefficients for the cross acceptance

become
Ajk = 0
Bjk ="_(3j|2_?£);‘ (3.21)
24
Ci T TGwm
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so that

4 .
K.k(u) == 22—' [k sin‘]"nél - j sin kTBru]‘ (3.22)
! (k-5 )m

Alternatively, for the joint acceptance, we find

1 J
Jj(w): 542 /Cf(u,w)KJ.(u) du (3.23)
0
where
Jmu 20 . jma (3. 24)
K.(u) = 2(f-u) cos 7 + = sin 5 .
J jw

3.1.1 Progressive Wave Field

Our description of the inputs is limited to quoting the
appropriate normalized cross-spectral density function for each of the
pressure fields. It is instructive to digress here and consider a more
complete calculation leading to Cf(x,x',w). We naturally select that

which is mathematically the simplest, a plane progressive wave.T

Figure 3.2 depicts a plane wave of frequency fo and wave
length )\0 which impinges upon a surface at the incidence angle 6. The wave

speed c is noted as

c = x_f (3.25)

If the input is of fixed frequency, we need not use the formulation
developed for random excitation. Indeed, it may be simpler to use any
of the techniques mentioned in Section 2.1 for computing the response,
squaring this result, then averaging over time to obtain the response in
mean square,
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and

Mo

cos 6

(3.26)

where A is the wave trace referenced to the surface. For a harmonic wave

which propagates in the positive x direction,

f(x,t) = P sin (w't - Kx) (3.27)
where w! = 2wf' and P is the pressure amplitude at x. The spatial cross-
correlation function for this wave is given by

T
R _(x, x', T)=PP! lim 1 sin [w't-Kx] sin |w'(t+7)-Kx'[dt 2
frese T Tr02T [ ] (3.28)
~-T
and becomes in the limit
1
Rf(x,x','r) _ PP cos [K(x—x‘) —w"r] (3.29)
2
The cross-spectral density then is determined by the transformation
Rf(x,x','r) 3 Sf(x,x‘,w) (3.30)
so that
«©
PP’ -3
Sf(x,x',w) = /cos [w"r - K(x-x‘)] e Tar (3.31)
4w
which resolves to the complex expression
1
Sf(x’x""") - PP { cos K(x'-x) [6(w-w‘) + 6(w+w‘)]
4 (3.32)

+ i sin K(x'-x) [5(w+w') - 6(‘*"“")]}
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e

Now if we normalize Sf(x,x',w) according to the ratio

given as Equation (2.52),

ef(x, x',w) = Cf(x, x',Q) -1 Qf(x, x' w) (3.33)

A .
where C-f(x,x',w_) is the co-spectra of C-f(x_,x',w) and Qf(x, x',w) the

associated quad-spectra. Due to homogeneity of the excitation field,
Se(xjx, w) = sf“ (%, x', w) (3. 34)

so that the cross-acceptance function reduces to
2 1
1 A
ij(w) = ;2 ff¢j(x)¢k(x')2 Re[Cf(x,x',w)] dx dx! (3.35)
o o

as the quad-spectra contribution resolves to zero over the double inte-

gration. With

POZ
S(x_,@) = S (x_,©) = —
3. 36
— ( )
5~ = 1
P
(o]

the cross acceptance becomes

2
i
ij(w) = -2—-2— / / ¢j(x) ¢k(x') Cf(x,x',w)dxdx' (3.37)
o 0

where

Cf (x,x',w) = cos K(x-x'") [5 (w-w') + § (w+w')] (3. 38)

which, except for the delta functions, is the form quoted at the beginning

of this section for a random progressive wave field.
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Consider now the evaluation of ij(w). The values for

the cross acceptance are given by the integral

£
1
ij(w) = 72 / Kjk(u) cos
0

2. du (3. 39)
5 .

which, in terms of the variable B, produces for j # k

: J
2 k L1-(-1 .
J.k(f’) = = ]2_[2 ( cho; 'rrﬂ], jt+k even
] w2 [2-6?] [2-6%]
(3.40)
= i+
ij(ﬁ) 0, jtk odd
where
g = BL L (3. 41)
™ cm
For the joint acceptance
£
1
J(w) = —= f K.(u) cos 2% du (3. 42)
! 22° )
4]
and, upon integration,
.2 j
J.(B) = 2 ] [1'('1) cos Trﬁ] (3. 43)
j 2 2 272
™ ] -
[J P ]
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When a wave number of the trace of the progressive wave corresponds
to a modal wave number,
K = k., = L (3. 44)
j J
For this condition of spatial resonance, the joint acceptance resolves

to the constant Jj(ﬁ) = 1/4.

Plots of the joint acceptance for the first two odd-numbered
modes are shown as Figure 3.3, and for the first two even-numbered

modes as Figure 3.4. Of note is the pronounced selectivity of each

function, in particular the peaks which correspond to the values of
spatial resonance. The odd-numbered modes display low-pass charac-
teristics for P = 1 whereas the even-numbered modes act more nearly
like band-pass filters over this same range and reject the excitation

components below, say,p = 0.1,

3.1. 2 Reverberant Pressure Field

For this field with K = =,

g

1 . :
J.(K) = K. _sin Ku .
Jk( ) 512 ] Jk(u) — du (3. 45)

which, in terms of B, yields ij(ﬁ) = 0 for j# kandj+ k odd, while for
j # kandj+ k even,

i
I, (p) = k [Cin w (B+j) - Cin = (B-})]
ik RONCNED [

(3. 46)
-j [Cin x (B+k) - Cin (ﬁ—ki]
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where

= L_
cT
z
1{-
Cin (z) =/—9'9'§'£dx
x
0
For the joint acceptance,
J
1 .
J(K) = — K. (u) sin Ku qu
J( ) 24 2/ J(u) Ku
[¢]
which becomes
1 - . -
JAB) = — [Cln m (B+j) - Cin w (5—3)}
] . 2
2jm B
1

+_£T_rf>_ [Si m (B+j) + Sim (B-j) J

+ i [1 - (—1)j cos T3 ]

2. 2
w2 (°-%)

where

Si(z)

It
2.
% s
%

o,

%

Polynomial expressions and/or tabular listings for the functions

Cin(z) and Si(z) are .found in standard tables of integrals [18].

Plots of JJ.([S\ and ij(ﬁ) are shown as Figures 3.5 through
3.8. The main diagonal expressions for the odd-numbered modes are

shown as Figure 3.5; for the even-numbered modes as Figure 3. 7.
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The off-diagonal terms for the odd-numbered modes are displayed as

Figure 3. 6; for the even-numbered modes as Figure 3. 8.

As is expected, a system with harmonic modes discrim-
inates between individual as well as combinational sums of even and
odd-numbered modes. For a reverbera.r;t field, the joint acceptance
plot for j = 1 bounds the other joint and cross-acceptance values;
it has nearly a constant value over .01=< B <1 and decays with a constant
(logarithmic) slope beyond > 1. For all modes except for j = 1,
both the joint and cross acceptance appear relatively selective
(near the various resonant frequencies) beyond the first resonance
value. For lower values of B, say f§ = .2, the even-numbered modes
are suppressed whereas the odd-numbered modes are characterized by

constant valued functions with magnitudes dependent upon the mode

number,
3.1.3 Aerodynamic Turbulence
For this excitation with K = Ui ,
c
— 1 -aK -
J (K) = —3 K. (u) e @ |ulcos Ku du (3.51)
jk 2 4 jk

0

which,in terms of B, yields for j # k

ij(ﬁ) = Ajk[l - (-1)je-ﬂ-aﬁcos 17{3]
(3.52)

+ B [(-1)je’“°‘%inng]
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where the coefficients are given by

2
G +k2)2 5 Y 212
A = [(a -1) g +1] -4[0,;3 J -
jk 2n2j3k3D,D 1 1
j k
Z(j2+k2)2 2[ 5 5
B, = af (¢ -1) B +1]
ik Tr2J.3k3D.D 1 1
j k
2 2 2 2
D. = ( + 1 + 1] -4 .
j (o ) ﬁJ BJ
_ P
P j
5 1/2
B, = B
1 jz + K2
K/ i
P - T = 7U ®

Similarly, the joint acceptance is expressed by the integral

£ _
JAR) = -—1—2 f K. (u) e—O[Klul cos Ku du
J 21 J

[
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which resolves to

I(8) = A [1 - (1) e TP cos -n'ﬁ]+ Bj(-i)je "B sin wp + c; (3.55)

where

2 { 2 2 2 [ 2 1%
A = — (e -1)[3.+1] -40’5.]
j (jw)ZDJ?- j L J

8 (3.56)
. ag;?—[[aZ-i]ﬁ; . 1]

I

c ! [a2+1’l 2 i1
j O @B i P;

The remaining terms are those stated previously. The exponential coefficient

corresponds to that used elsewhere [17 ], it is written as

o = 0.1 + 2203 [ 2 ] (3.57)
3 6b

where 6b is the depth of the boundary layer.

Plots of Jj(ﬁ) and .]'jk(ﬁ) are shown by Figures 3.9 through
3.15. Figures 3.9 through 3.11 show the joint and cross acceptance
functions for ,Q/éb = 1 while Figures 3. 13 through 3. 15 display these
same functions for £/ = 30. For the modes considered, note

b
that the off-diagonal or cross acceptance plots have negative values
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over some portion of the range 1< § < 20. The magnitude and behavior
of such values are shown by the curves referenced to the lower log scale

in the cross acceptance plots.

Figures 3.9, 3.12 and 3.13 intimate the spatial selectivity
characteristics of the system in a turbulent field as well as the relative
effect of boundary layer depth on the joint acceptance functions. The
system acts as a more selective filter in f for the thicker boundary
layers and tends to suppress, in particular, the contributions from the
even-numbered modes for p <.5. Over the range .01< B < 1, the
acceptance magnitude for the j = 1 mode dominates the values of the
other modes; for > 1, a curve which connects the acceptance values at spatial
resonance for each of the modes envelopes (practically speaking) the
major contributions. Note that the thicker boundary layers spread the
range of acceptance values over 01.< B =< 1; the j =1 term increases
from = 0.11 to =.379 while the j = 10 térm decreases from = 0.0009
to = 0. 0007.
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3.1.4 Approximate Representations

Upon inspection of the mathematical forms which govern
the acceptance functions for both the reverberant field and turbulence,
it is clear their substitution into Equation(3. 5 will yield rather compli-
cated integrands for the integrals of the mean square response. To
carry out such integrations over @ in closed form is an enormous
mathematical task both in complexity and in tedium. One then seeks
refuge by specifying simpler, approximate representations for the
acceptance functions. We examine here two approximate forms which

rely upon application of
° the Schwartz inequality
L simple filter theory

The Schwartz inequality is given by [9]

[/ [ £ 5 1/2 2 1/2
~/EKx,xW NLEE []ﬁbj(x')dx' J/bz(x,xwdx' (3. 58)

) 0 Y

so that a bound on the cross acceptance becomes

¢ 1/2 ! Qz 1/2
ij(w) < !%z' { f¢12((x) dx 1 /q;j(x) ij(x, x', w)dx! dx (3.59)
0 0

4]

.. 2
By the Schwartz inequality applied to the bracketed term containing Cf(x,x',w),

. £ 1/2 22 1/2
ij(w) < "g‘z /¢j(x)dx :‘ /¢k(x)dx If (w) (3.60)

o 0
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where

[ 1/2
If(w) = j[czf (%, x',w)dx dx! (3.61)
0 ]
If we assume
C?(x, xhw) = sz (x-x',w), (3.62)
then
2/2 2/2 -x
2 ' 2
If(w) = Cilw ) du| dx (3.63)
-4/2 =8/2-x
o) = 2 2 o 3. 64
fw) = j (£-u) C; (w,w) du (3.64)
[¢]
so that
2 2 2 1/2
1 2
Tode) S 73 [ 2 f ¢§(x)dx f b (x)dx / (g-u) sz(u,w)du:[ (3. 65)
0 0 0

which agrees with that already established [1 6].

For the harmonic mode shapes of Equation (3.7), the bound

becomes

4 4 " 1/2
J. (W) 2 =377 j(ﬂ-u) C (u,w)du (3. 66)
jk [2 g z] 1/2 £ }

0
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and, for the three fields of concern to us,

® plane pressure wave

- 1/2
I (B)= - 172 [(mﬂ2+-ﬁnzﬁv ]' (3.67)
Jk 2B [2 ]

© reverberant field

1 { 1/2
J. (B)= 172 [ sin 2wB + B Si(ZwB)-E‘ Cin (27p) ] (3. 68)
e [2]
® turbulence
J.. (B) < 1 Zaz+1 - aZ(az-iz
k= —4;;-6-—— 2raf| —5— 1+ > 5
a“+1 (a”+1) (3.69)

1/2

2. 2 3
+ o CmeP 1-+9¥é§¥:%l cos 2up - i; , sin 2mp
(a“+1) (@“+1)

where @ is given by Equation (3. 57). Practically, the use of these expres-
ions in developing closed form mean square response results is limited
severely due to the mathematical complexities introduted by the radicals.
To avoid such problems, simple filter functions in P are suggested which
can be made to approximate the acceptance functions as well as lend

themselves mathematically to evaluation.

We choose to derive filters which can be made to envelope

approximately the maxima of the reverberant and turbulence excitations.
Such filters also can be used to match approximately the individual accept-

ance functions. From Figures 3.5 through 3.15, we note the maxima are

governed by the values for the various joint acceptances. By inspection,
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the envelope functions for the odd-numbered modes of the reverberant
field and the turbulence appear to have low-pass characteristics of the

form

I (@) = (3.70)

where r and q are constants. The envelope for the even-numbered modes

of the reverberant field seemingly have the band-pass characteristics

g2 (3.71)

I (B) =
4 2 2 4

= p t+2pp tgq

where p, as with r and g, is a constant. By selecting values for these

constants, the filter characteristics can be set to match (approximately)

those of the acceptance envelopes.

Table 3.1 cites the numerical values for the filter constants
used in this study. Figures 3.16, 3.17 and 3.18 provide a comparison of
the acceptance envelope function, the Schwartz inequality and filter approx-
imation for the reverberant field and turbulence. Except for the range
2 =B =12 in Figure 3,16, the filters provide a tighter bound on the joint
acceptance envelopes than do the Schwartz inequalities. This exception

can be eliminated by an alternate selection of filter constants.

Although conservative, the filter roll-offs at the higher
frequencies do not provide a satisfactory fit to the acceptance envelopes.
This can be corrected by introducing higher-order polynomial filters
with effective rolloffs somewhat less than 1/[32. It must be remembered
the filters should not be designed solely to match the acceptance envelope. .
Equally important is that their mathematical form be amenable to inte-

gration over B, preferably, by residue theory.
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TABLE 3.

DESCRIPTION FILTERS
[45)
x

S L

w o~ Lol

il g = 20.8

[3) 2 2

’_\{h a B+ (11.3)

<Z( 1 ©

[0 o8

w Q

QO ~

24 [72]

w =

o G (5152) B°

2 — 9y (B) = .
> g + 2 (12327 g+ 3°
wl
>
81

w (%))

LR - ) 6.92

2 JI(B) - 2 2

o @ - g + (7.84)

D <g

l—

FILTERS FOR JOINT ACCEPTANCE ENVELOPES
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3.2 MEAN SQUARE RESPONSE RESULTS

In this section, we examine mean square results for

the three previously mentioned pressure fields and the three system

functions
e w1 - me = — : :
i) [1 ) (%J) rie Z"j(_‘*’—j\]
o 1YW = md e = _ (3.72)
() e ()
o mPw = m ) - (%)2

1 - (%J,)ZH 2 éj(%j)

Numerical integration recults are presented for all combinations of
these pressure fields and system functions., Emphasis however, is

upon closed form results for all system functions wherein filter approxi-
mations are used for the reverberant and turbulence excitations.

Exact closed form expressions are shown in Appendix B for the pro-
gressive field and the first two system functions; such expressions

are evaluated, then displayed here in graphical form.

3.2.1 General Formulations

As stated earlier, the mean square response is given by

the integral

e}

Ui(x) - fsy(x,w) de (3.73)

- @
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Y

This can be expressed as the double summation

2 @ [=2)
cox) = D > bx) ¢ (x) I (3.74)
y . ] jk
j=1lk=1
where Ijk is the integral
@
2 #
= 3.75
Ijk 2 So ,[HJ (w) .Hk(w) J'J_k(w) dw | ( )
- CO
and S(xo,'w) —>SO. In terms of the variable B, we can write I.k in the form
J
(1)
= 3.7
L = 1 Iy (3.76)
where the coefficient C1 is given by
c. = AGP (3.77)
1 —
200
mT
and the one-sided form of the integral I'l(<1 )by
J
@
(1) (1)
= R J d 3.78
Lo a (B) T, () dp (3.78)
0
with
® 4 ¥ 3.79
Ry (B) = mum o Re [H () H(p)] (3.79)
For the modal damping ,’_;J. = gk=§',
A
rYY gy = () (3. 80)

ik a%(@) + B(B)
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where

G- %yt w2 p%) ¢+ ek mp )’

A(B)

2t p B [ jz(k4-,H2 BZ) ) kz(j4_ w2 BZ)]

B(B)

and

TC
}.L:

Ewl
w = 2
i %

For turbulence, the speed of sound ¢ simply is replace by U .
c

For the second system function H§2)(w)

_ (2)-
Ijk = CZ Ijk
where
CZ - Go £or wl
2 4 4 (1 F(2)
Le = 3 K Iy :fRJ.k (B) T, (B) dP
0
with
(2) PERRNEY
Rjk(ﬁ) =] k Rjk (B)
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Finally, for the third system function H_(3)(w),

J

Lo = C, ij) (3. 86)
where
c3 = GO IZZ HS w,
(3. 87)
(3) - (3)
L = /Rjk(ﬁ) T () ap
0
and
(3) . (D
Ry B = P R, (P (3.88)

With the three integrals forms related to the I, integral, we now write

jk
the mean square response in the forms

2
- (1)

SO g $(2) & () Ty

J

2
(2) (3. 89)
k) = Gy 2240 4 T
ik

2 (3)
o) = < Zchbj(x) b x) T
J

These expressions are used in the numerical integration,
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3.2.2 Filter Approximation Formulations

For practical reasons, prime concern here centers upon
the evaluation of the Ijk integral for both the reverberant field and the
aerodynamic turbulence. Althoughthe progressive wave is ofinterestand
response results calculated in closed form for the system functions
H(jl) (w) and H(jz)(w), the details of the response calculations will not be

elaborated upon here. Rather a separate discussion is presented as

Appendix B.

Using the exact expressions for the cross acceptance
terms of either the reverberant or the turbulence excitation, the inte-

gration of I.. is a formidable task. In seeking closed form results,

k
the matherrfatics is not entirely simple and the algebra abundant so

that meaningful and concise expressions are not easy to establish, In
fact, such expressions have yet to be determined. In carrying out such
(exact) integrations numerically, it is difficult to develop an accurate
understanding of the parametric effects without using a great deal of
computer time. This is due largely to numerical accuracy problems

which are introduced because the system and acceptance functions do

not vary smoothly and slowly over the range of integration.

Faced with these analytical and computational difficulties,
yet driven by the need for a '""compromise' solution, we explore the use
of well behaved polynomial filters to establish estimates of the response
in mean square of multi-mode distributed systems. Central to this idea
is the system response described by Figure 3.19, This model implies

the output response is accounted for by contributions from

e j distinct normal modes
[ a residual impedance for the miid-frequency range

. a residual impedance for the high frequency range
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We concentrate here upon the output due to the normal modes although
these same filter concepts can be applied to include the residual impe-
dances. Let it be clearly understood that in this report we strive not
for accuracy over the range of modes considered. Instead, we con-
centrate upon simple filter forms which have approximately the charac-
teristics of the desired acceptance functions, and at the same time, are
amenable to integration by residue theory. By adjusting the numerical
values of the filter constants, the accuracy of the filter approximations

can be improved at will,

Let us consider an abbreviated derivation of the mean
square response for the filters JI(B) and JII(ﬁ), and the first system
2
function Hj(w). Clearly, results for the system function H(_] ) («) then

can be developed by simple multiplication, Thus, for the second order

filter,

J(B) = r (3.90)

(Btiq) (P-iq)

where for the reverberant field

e 2E e, ¢ - L (3.91)

o o . (o} me

and for turbulence

B = = wt , t = — (3.92)

The product of the system functions are given by

1

HJ. (w) H, (@)= (3. 93)

mjmk(w—.sl)(w—sz)(w+s 1 )(w+sz)
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where

s, =a. +ib = -3

with

)
il
£

Sl

—

—
1

<

Tt

S

The Ijk integral then may be written as

e
2 %
Ijk = { S0 f Hj (w) Hk(w) .J'I(w) dw
-
and by residue theory

: 3

I = BZS (27i) Z R

Jk - o I‘=1 r

where R is the rthresidue oinF(w) H, (w) JI(w) at its poles in the upper -

half plaﬁe. The poles are given by

P, = a. +1ib,
r .7 J
P =-a. + ib.
2 J J
- Jeca
Py =1 7
and, after some labor,
41 BZSOr
e © 2, 2 2 Ajk
J
m.m_t w. -2b.q'+q’
o (J 4t )
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where

2 2 2 2 2 2
b.(a. - -(b.+b + (b.,+b . -b, +q'
(a5 -ap ~(b.#by)7) + (btby) (af BT +a')

2 2 2_2 242
W +2b.q'+q'7) ({b -al  ~(b.4b )
Loy7eb; , d i ok (570 ]

jk

. f

4 q'(<»i + 2 bkq'+-q'2)

2
+ 4a, (b.+b
J( j 'k

with the symbol ' defined as the ratio

q

4 o
The main diagonal terms with I., = I, reduce to
T IJZS T 2 2 2 2
o q'(aj - 3bj +q') + ij wj
I, = .
j 2 4
I amidbilq itz @®-p)qt g
JJ 160 J ) J

For the fourth order filter,

T(B) = P
[B-i(cta)] [B-ilc-a)] [B +ilctd)] [P+ilc-a)]

where the coefficients ¢ and d are related to the filter constants by

2 1 2, 2 2 1,2 2
¢ =5 (P +tq) 4 =50 -q)

The integral I‘k becomes
J

@

2 o
I, =1¢°S H

-
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and by residue theory

jk

r=1

4
1. = g° s, (Z'rri)z R_

where the poles in the upper-half plane are given by

P = a,.,+ib.
1 j
PZ =—aj+ib,
p _ ctd
3 — 't
o
P = i (c-d
4 t
o

After some additiornal labor,

27 QZS r!
o

I =
j t
jk ’ mjmk °

jk

4 4 2 2 2
- - - (b, +
5 Cj [bj( wj q'’) (aj ak) (bJ bk)

4 2 2 2 2 2 4
+ (b, +Db C(@l-bT+2p' )+ (a) - b, ')]
(b, + b)) (w(ay =B+ 2P') + (2]~ b)) q

c'+d!

1

* 8ctd!

cl_dl

1

A (a?+ (bj —c'—d')Z) (a]i + (bk +c'+d')2) ]

8c'd!
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where

2 2
2 2 2 2
B, = a, ~a -(b.+b ] + 4 a, [b.+b
jk [( j K 7 j i) L k]

2
C. = [ (az -b?) (az -b.+ ZP'Z) -4 a?b?+ q'4] 2
J J J J J 3]

+ 16 az.b.z[a‘.2 - b2+ p'2]2
JJel J
Division by to is noted by a prime superscript so that

Cl

1 —~4
c/to ) p/tO

it

1 1=
d d/to q q/t0

For the main diagonal terms,

2
2w £°S 1! 4b,
I = 2 ! w4(a.2-b.2+ Zp'Z)+(a,2-b.2')q'4-2b.2(w‘.l—q'4)
2 B.C, J o] J ] N
. t
m, J ]
j o
c'+d! [ 1
q 2 2
8c W+ (c+an)? ((e+d) + 2(a° b))
J

cl-d! 1

1Ad!?
Sc'd w;} ¥ (ct-an® ((er-dn)® + Z(a;.z -bjz))
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where

B, = 16 b,2 w_z
J ] J
5 (3.112)
2 .2 2 .2 2 2.2 4
C. = a.=b )(a, -b,+2p')-4a, b, + ']
J [( J ) J J P J ) 4
2 2
o ieatu [onten? |
J ] J ) :

' In much the same manner, we derive closed form Ijk
results for the third system function H(j3)(w) and the filtefs Jl(ﬁ) and
Jn(ﬁ)° The desired integral is written as

@
_ 2 *(3) (3)
Ijk =4 SO ij (w) Hk (w) ij(w) dw (3.113)

-0

where .Tjk(w) is represented by either JI(w) or JII(co). For the first filter,

the residues are governed by Equation (3. 97) so that

2
47d"s _ r 2
L= 5 —°— b(uf +2(a° - b g'5) 7w’
J 2 i3 j hj k
t  B.. C,.
o jk7j

4 2 2. 2.2 4 2
+(w. +{(a” =3b)q'")w. b, -b,w,q" (3.114)
J J J)q ) ik J Jq
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where

2 2.2 2 2 2 4
= - +
Bjk (a.j ak) + Z(aj + ak)(bj + bk) (bj + bk)

(3.115)
2 21T .2 2
Cj = [aj + (bj -q') ] [aj + (bj +q') ]
For j = k, the Ijk expression reduces to
) nﬂzsor ' w‘; + (a§-3b§)q'2+2qu'3
5T 2t%p. ot 2@ip% gtf 4 g* (3. 16)
°) J J ]

For the second filter, the residues are treated according to Equation (3.106)

"so that

2 4 7 4,2, 2 2 4
I, = —2% |[. 2b.w. [w.p' +(a’;-b))q" ]
jk (2 Bk G 33 i

8 4,2 .2 .2 4 2.2 4. .4 2
w, +2w, (a.=b.)p' +(a.~-10a b, +5b.)q’ b, w]
[J I B (J id i’ 'k j

8 4,2 .2 2 2 2.2 .2 4 p)
- {w. +4w. (a.=b.)p' +(3a.-b.)(a.-3b.)q! b.w
[J S R T J)qJ oL

(3.117)
+ (c'+c'|')5 1
8cid! - 2 2 [ 2 2
a5 + (b= -d") ] ar + (b, tc'+d') ]J
(e'-dn’ [ 1 7
8cld! [z , ,2] [2 ) ,z]
aj + (bj -ct+dt) ;k+(bk+c ~d') |
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J

where

2.2 2.2 2 2
B, = (a°-b" -2b.b, ~w + 4a°(b.4b
ik b o ) J( j k)

j k k
| 2 .22 2, 2 2 :
2, 2 .2 4
C. = |(a.-b)) =-4a b, +2p' (a.-b.) +q' 3.118
J J ) JJ P J J) 4 ( )
+ 16 az.bzt (az. - bz. + p'z)2
iti i i
For j = k, the resultant diagonal term becomes
2
mf S r
2
I = 5 o o [wg + 2 w‘% (az. -sz.)p'2 + (a%-10a2.b2.+5b‘%]
I a4 ;G L ity S I B
o
5
(c'+d") 1
+ Y > > > > (3.119)
[a, ¥ (b,-c'=a)” | [a® + o +c'+an)
i i
(c'=d)°

1
c'd’ E‘Z_ + (b,-c'+d')2J [az, + (b.+c'-d')2J
it i |

The coefficient t0 is given by either Equation (3. 91) or Equation (3.92)
and Cj is that quoted above.

3.2.3 Results

In the preceeding sections, we have considered formula-
tions intrinsically related to determining mean square response values

of a structural system. The first sections deals with forms compatible

with numerical integration while the second section concerns filter
approximations results in closed form. Let us now examine a numerical

evaluation of these theoretical results,
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The three system functions evaluated are those defined
by Equation (3.72), For light values of damping, say éj < .‘1, all of
the systems display selective band-pass characteristics. The first
expression corresponds to the familiar displacement-to-force fre-
quency response functions; the second, modal magnification factors;
and the third, acceleration-to-force system functions. Here, we assume
the equal modal damping { = 0.025. Accordingly, the characteristics
of the three systems are silown by Figures 3.20 through 3,22 where
R;l)(@) is given by Equation (3. 80) with j = k. The remaining two sys-

tem functions are defined in Section 3. 2.1.

The output response in mean square of systems with
these filter characteristics are governed by the modal summations of
Equation (3.€9), For the reverberant field, integrands proportional
to Ijk (for j =kand j=1,2,3, . ., 10) for each system are shown by
Figures 3,26 through 3.28, respectively. Tables 3.2 through 3.7 show
the integrated values for each mode and each system; these values
correspond to the contribution of the main diagonal terms to the mean

square response,

By comparing the filter approximation tabular values
from the numerical integration with the closed form results, confidence
is eatablished in the validity of the analytical work. Also, by an exer-
cise of this sort, we are led to respect that general class of numerical
accuracy problems associated with the integration of sharply fluctua=~
ting functions, Such problems are particularly severe for the cross

term integrations. After numerous trials, the increments used in the
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2 2 2
SYSTEM C H@)] e |mjfH, (@) -2 |mw?H (@)fone3
p=1, { =0025 : ) -
i=1 8.958 8.958 13.128
j=2 6.094 (-2) 15. 606 16,959
j=3 2.423 (-3) 16. 020 16,697
j=4 2.732 (-4) 16. 423 16.591
Q. . _ _
© j=5 4.192 (-5) 16.376 16,251
) — _
- j=6 ' 9. 891 (-6) : 16. 613 16..056
Es:i j=17 2.860 (-6) 16,493 .15, 675
) e
’\\‘o ] |
j=8 9.834 (-7) 16. 499 : 15, 371
j=9 3,808 (~7) 16,394 14. 831
j =10 1. 009 (-7) 10. 663 9.149
TABLE 3.2 MAIN DIAGONAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE

(REVERBERANT FIELD - NUMERICAL INTEGRATION OF INTEGRAND)
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SYSTEM [Hj (@) [mefH, ()] =2 |m.w2H.(w)2,n=3
p=1, § = 0025 J A
B S j=1 12, 642 12. 642 26,096
— j=2 7. 774 (~2) 19. 901 . 23,939
2 Q ’
P j=3 1.058 (-2) 69. 704 70. 966
S
S j=4 7.302 (-4) 47.858 47. 801
) i=5 1. 482 (-4) 59. 601 52. 910
Q
= j=6 2. 376 (-5) 39. 913 36, 448
= j=1 6. 465 (=6) 37.273 30,260
g X
\o
j=8 1. 636 (-6) 27. 449 22, 847
i=9 5,603 (=7) 25. 927 18,199
j=10 1.438 (-7) 14,377 8.278
TABLE 3.3 MAIN DIAGONAL CONTRIBUTION TO THE MEAN SQUARE RESPONSE

( REVERBERANT FIELD- NUMERICAL INTEGRATION. OF FILTER APPROXIMATION)
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2 2
SYSTEM 'Hj(w) e ‘mjwf Hj(w)[,n:z lmijHl(w) I
p=1, & = 0025
j=1 12. 361 12. 361 19,247
© [}]
N o j=2 7. 758 (=2) 19, 860 24,106
a @
s j=3 1. 061 (=2) 69. 616 71.126
sz j=4 7.197 (-4) 47,168 47, 832
&
© j=5 1.474 (-4) 57,565 52,998
@
e j=6 2. 344 (-5) 39,373 36,594
@
g - j=1 6,432 (-6) 37.077 30. 821
ai
j=8 1, 636 (-6) 27.470 23,568
j=9 6.033 (=T7) 25,972 19.253
j=10 1. 488 (-17) 14. 876 15, 713

TABLE 34 MAIN DIAGONAL CONTRIBUTIONS

(REVERBERANT FIELD - FILTER APPROXIMATION

TO THE MEAN SQUARE RESPONSE

IN CLOSED FORM)




€01

(TURBULENCE - NUMERICAL

INTEGRATION OF

2 2 : ' 2
SYSTEM | |Hj(w),n=l |mjwj2Hj(w.)I.n=2 |mjw2Hj(w),."=3
p=l, &8, =30, {;=0025 |
z | | |
j=1 5 3.037 3.037 | 3.459
j=2 2.329 (-2) 5. 961 6..028
j=3 7.038 (-4) 4,607 4,283
j=4 5. 917 (-5) 3.878 3.502
S i=5 7.066 (=6) 2,788 2,243
= _ :
e j=6 1.391 (-6) 2.337 1.807
a - |
=, j=7 3,653 (-7) 2.106 - 1,561
g X |
— |
j=8 1.170 (-7) 1. 962 1. 399
j=9 4,310 (-8) 1. 856 1,264
j =10 1,328 (-8) 1.328 0. 652
TABLE 3.5 MAIN DIAGONAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE

INTEGRAND)



Yor

2 2 2
SYST E M IHj(w)1n=' lmjwszj(w),mZ |mjw2Hj(w) yn=3
p=1, &8, =30, £;=0025
j=1 3.592 3. 592 4,772
j=2 4,427 (-2) 11,238 12,073
j=3 2.151 (-3) 14,194 13,977
j=14 1. 822 (-4) 12,039 11.109
Q@ : |
G j=5 2.296 (-5) 9.107 7.922
@ f
- j=6 4,245 (-6) 7.130 | 5. 760
a , | T
= j=1 9.831 (-7) | 5,669 i 4,250
8 ™
‘\o ‘\
j=8 2.825 (-7) | 4,705 | 3,249
i=9 | 9.322 (-8) | 4,031 I 2.514
| )
j=10 | 2.763 (-8) 2,763 if. 1142
| | |

TABLE 3.6 MAIN DIAGONAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
( TURBULENCE—NUMERICAL INTEGRATION OF FILTER APPROXIMATION)




S01

; 2 2 2
SYSTEM ; ’Hj(w),nﬂ - }mjwszj(w),mz Imjwij(w) , n:3
=1, Ys, =30, £,-0.025
| o 5=1 3,483 3,483 4. 821
5 I 5=2 4,410 (-2) 11.289 12. 080
|
| j=3 2. 160 (-3) 14, 175 13. 987
L= 1. 807 (-4) | 11, 842 11024
| | |
! i 1 '
Q j=5 2.317 (-5) | 9. 051 7.982
a s
- i=6 4,177 (-6) 7. 016 5,777
?% j=1 9,773 (-7) 5. 634 4,333
sl |
° j=8 2.792 (-17) 4,684 3,352
i=9 9.323 (-8) 4,013 2.663
j=10 2,763 (-8) 2,763 2,164

TABLE 3.7 MAIN  DIAGONAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
(TURBULENCE — FILTER APPROXIMATION IN CLOSED FORM)



numerical integrations over the range ,01< <100 follows: the incre-
mental size of f over . 0l= B =<1lwasA=,05; over1=p=12, A=,1; over

12= B =30, A=.5; and over 30=3 =100, A=1.

The relative contributions of the off-diagonal terms to the
mean square response for both the reverberant field and turbulence are
shown by the tables in Appendix C. In this study, the modal frequencies
vary according to wk/wj = (k/j)2 and the modal damping has the same
magnitude for all modes, { = 0,.025. Consistent with these properties,
the off-diagonal terms should (and do) contribute little to the mean
square response relative to the diagonal terms, For more closely
spaced modal frequencies, say when the frequency spacing is within
1. 414, and/or damping values on the order of K_.J_ = 0.1, the effect of the
off-diagonal terms will become more pronounced. Due to the crude
filter representation used, the integral contributions of the off diagonal

terms are accentuated, in particular, for the higher order terms.

We note the accuracy of the filter approximations is
lax, Such is expected inasmuch as the filters shapes were set to
match somewhat the envelope maxima of the acceptance functions
rather than the acceptance shape for each of the individual modes., If
the filter constants are made dependent upon the mode numbers, the
accuracy of the filter approximations can be improved by an order of
magnitude. By retaining the analytical filter results in parametric
form, this modal dependent filter scheme can be implemented with

negligible analytical effort.
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Normalized plots of the mean square response to the
reverberant field are represented by Figures 3.29 through 3. 31; and
to the aerodynamic turbulence by Figures 3. 32 through 3. 34. For
completeness, the mean square response to the plane progressive wave
is repeated here as Figure 3.35. Since the variation of o-z(x) is sym-
metric relative to the mid-span of the structure, the plotgare con-
structed only over the range 0 = x/§ <.5. The coefficients Cn’ where

n=1,2,3, are those defined in Section 3. 2.1.

Of note is the decisive difference in form and magnitude

between the response for -the system function Hj(w) and the response

for the other two system functions in the reverberant field and turbulence.
The response for Hj(w) essentially is that of a unimodal system at w)
since the other integral contributions are minor relative to the j =k =1
term; thus, o-z(x) varies over x approximately as sin2 mx/§ . The
response for bot:h_rnj w?Hj(w) and mjwij(w) are influenced predominantly
by the main diagonal terms. All ten terms are important for the range

of parameters selected here; those beyond j = 10 would be considerably

less important due to the rapid roll-off of the acceptance functions.

The variation in Uz(x) over x for the plane wave excita-
tion is similar for all of the systh functions; it is unimodal in its
behavior. We note this variation is similar to that of H, (w) in either
the reverberant field or/and the turbulence. For the s;stem functions
m,wZ_H,(w) and m.wzH.(w) in either the reverberant field or/and the
tui‘bfﬂénce, the rJnearf square response variations are markedly similar;
the (rz(x) rises rapidly over the range 0 < x/f¢ <.l and fluctuates only
modeitly over .1 = x/f <.5, If a larger number of terms were used
(we recall j =1,2, . . 10 and k =1,2. . . 10), their contributions would

tend to smooth the fluctuations so that trf'r(x) over .1 < x/{ = .9 would be

nearly constant,
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4.0 SUMMARY REMARKS

In this report, we reviewed briefly the theory fundamen-
tal to assessing the mean square response of distributed linear systems
in a random environment. The theory empllaasized favors a modal series
representation and spectral analysis; hence, attention is focused upon
formulations which lead to response spectral density functions. Non-
homogeneous, nonstationary excitations are mentioned; homogeneous,
stationary excitations are examined in depth. Point-wise loadings are

treated as well.

To promote insight into the physical meaning of the theory,
some of the formulations presented in the text are used to compute mean
square response values of representative structural systems to each of
three distributed random excitations. The basic structural system is a
very simple one, It is a one dimensional system, and assumed to have
harmonic mode shapes, well separated modal frequencies, and equal
damping (gj = 0, 025) in all modes. Such assumptions do not necessarily
compromise the generality of the results and, at the same time, serve
to simplify enormously the mathematics. The excitations examined,
three in number, are all homogeneous and stationary acoustic pressure
fields. Chief interest concerns those excitations representative of a
reverberant field and aerodynamic turbulence, although a random pro-

gressive wave field is treated.

We examined three system functions with frequency charac-
teristics designated by Hj(w), rnj w? Hj(w) and mjwz Hj(w). For each system
function and each excitation, the response contributions are determined
for the jk terms where j=1,2, . . 10 and k =1,2. . . 10. These data are

shown in Appendices B and C only for j=1,2, . . 9andk=1,2. . . 9.
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In the text, the contributions for j =k =1,2. . . 10 are considered in

detail for the reverberant field and turbulence; that is, the system
functions, the acceptance functions, and the products of these functions
(response spectral densities) are all displayed. Similar detail is given

to the progressive wave in Appendix B.

Of note are the filter approximation formulations, The
filters are designed so that their frequency characteristics can be set
to match the joint acceptance functions for the reverberant and turbu-
lence excitations. In addition, and equally important, these filter forms
(after multiplication by the system functions) are amenable to integration
by residue theory so that parametric mean square response results can
be obtained in closed form with but a moderate mathematical effort,
Closed form results are shown for all three system functions, When
compared with the values computed by numerical integration of the fil -
ter approximations, these theoretical results agree very closely so that
validity in the theoretical work is established. Of use also are the closed
form results for the progressive - wave excitation; the details of this ana-

lytical effort is shown as Appendix B.

For a consistent set of system-excitation parameters, the
variations of o-z(x) in x display similar patterns in behavior although the
accuracy of the filter approximations relative to numerical integration
of the exact integrands is not satisfactory. However, the filter results
can be made to ma tch almost exactly the numerical integration results
simply by selecting other filter coefficient values (note that with the closed
form results, this matching activity reduces to but an exercise in algebra).
Having set the coefficients in this way, we then can plot the filter charac-
teristics and observe what constitutes a '"good' approximation of the force

field acceptance functions. Perhaps less crudely, we can establish a
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dependency of the filter coefficient values on the mode numbers and
use this form of model in the response calculations. These are but two
plausible approximation schemes; others certainly can be devised by

the reader.

As with all work of this nature, the results collectively
point out a number of additional tasks fundamental to not only under~
standing the subtleties of the underlying theory, but developing theore~

tically proper response predictions as well, Some of these follow:

° for the turbulence and reverberant field, formulate a
modal dependency relationship for the filter coefficients

in the filter approximation response model

o develop residual impedance concepts so that response
predictions can be made when modal concepts are

inappropriate or inordinately complicated

2 .
° examine the variation of o-y_(x) for structural confi-

gurations with random system functions

. . . 2 o L. .
) examine the variation of (ry(x) for variations in p

and /or nonconstant modal damping

. 2 . .
® consider estimates of cry(x.) for system functions with

2
modal frequency spacings other than wk/wj = (k/j)

° consider acceptance functions for orthogonal functions

other than simple harmonic mode shapes

° consider acceptance functions for systems with sta-

tistical variation in the mode shapes

This list is by no means exhaustive, although such results would go far to

answer questions of immediate practical interest to the analyst.
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Perhaps the greatest value of this report is the implicit
generality of the results; the true worth, however, depends to no small
extent on the resourcefulness of the user. If nothing else, the included
plots, tables, and theoretical expressions all serve one extremely impor -
tant purpose., They provide a latent ''feel' for the nature, complexity and
expected forms of solutions for problems indigenous to structural response
predictions in random environments. Radical departuré from the general
behavior shown here would be suspect even for more complicated struc-
tural systems. The results shown thus provide solid theoretical bases

from which to establish, however simple, response predictions,

The direct extension of these results to structural configu-
rations of more than one dimension is not unreasonable, though not with-
out additional effort. Such an extension requires a formulation which
makes repetitive use of the integral forms presented here. This approach
has precedence in classical treatments of plate and shell structures and

in more practical applications as well [4, 17] .

The reader is urged to examine the various appendices in
a manner something other than that of a cursory inspection. Although
not profound, the problems of Appendix A should promote physical insight
into the theory and clarify some of the symbolism of the text. Appendix
B concerns in detail the response calculations associated with random
progressive waves. The integral forms here should prove of interest to
the reader who is more analytically inclined. Appendix C shows the
modal cross terms for all three system functions and both the reverberant
field and turbulence. Appendix D represents a small collection of integral
results important to the work of this report as well as fundamental to non-
stationary excitation problems., For the serious analyst, time spent in
becoming acquainted with the integral forms in this brief table should

prove a very worthwhile investment indeed.
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APPENDIX A

Here, example problems and their solutions are
presented to illustrate some of the theory. preséntéd in the text
of this report. The equation 'nurﬁbers refer to. each problém separ.atel'y;
no confusion should result even though some of these numbers are used

elsewhere in the text.

Example Problem 1

Calculate the response y(t) of a mechanical oscillator to

the rectangular step function of Figure A, 1.

Solution: The system equation of motion is

or, alternatively,

Y e v W, 4= — () (1.2)
where
wt = \—(-
A w\,
' - &
A8wn = W (1.3)
-
¢ 7 =

.

The input force excitation mavy be written as
b= L liw- 0t (1.4
where U(t) is the unit step function.
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;i

By Fourier transform methods, the response y(t) is given by [9]

. Lo .
— ' wt '
Y= L v
d ) YYe W
-o0
and the Fourier tré.ﬁsiorm (F.T.) of the response by

N lw) = H () F )

where

\J‘Lu)\:— ‘L'—z-' (

W\ u)\\

Now the F. T. of the excitation f(t) is noted by

() =— Fw)

and [ 9]

{
UGY) <=—s T + o

so that

Feoy = (ﬂ,-[w&(oﬂ T‘;][l - e._ljc"w]

The response given by Equation (1.5) may be expressed

as the sum

Q) = Ty Ly + T+ T
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6)

7)

8)

9)
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11)



where
TN+
L=

L= - T,(t-t.),

Upon integration

I

et ,
A He ™ e dw

‘io
~co
oo .
S
w

Lo wt
Hesy '™ o

fe

ATt

ST (tto) y fer t 24,

(1.12)
for 12 to

o
L= =

T = fo

vt
c

where

[T

ATm L

<

- 20

' e{u)
(Wy-w™ Flagw,w) »

(1.13)
it |
' (Q.t X \ ﬂ_
Siw c{) + =

(1.14)
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Thus,
‘S({\: T.Lt'\ r T, {or. ottt

(1.15)

G = T+ T, (1) - Ut [Tt £ 4 T, (- t)] | fev k2t
or, in expanded form,
¢ -bt |
&(t\ = '\i" [\ - (.‘g:_;t)\/?_ i [A't‘ﬁ-tQ]] ) _~Cc>\- ot t < to
( ~L(t°t.,) :
107 % [_%T—ET’* tin fatt-ty + 4] (-6
for L2 t,
-bt
S BRI VS
(=g
{)'-'-' Jruuu;,‘( ._(!'f gk)VL -
| N
An alterné.tive approach is to reconsider Equation (1. 5)
beginning with the form
‘ ot : (1.17)
4V = T \He Py e ™ dw

-
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Since

h(t) HH(&J\

{(£) as F (w) (1-18)
the time convolution theorem allows us to express this equation as
u&(t\ = Q \n(v\\ﬁ(’c-w\ d v | (1.19)
which may be written as
t b :
1= gkm {(k-n\dw = gk\(t-v\\ foa)d v (1.20)
o . IS
since
W (t-w\ = © forr  oglttn.
For this probiem,
ot - -
htY= e suwe ot (1.21)

and subsequent integration according to Equation (1.20) produces the

results shown by Equation (1. 16).

Yet another approach (and possibly the least tedious for this

problem) is by the use of Laplace transforms. By the L. T. of Equation (1. 2),

Ny = Hiwy T ' o (1.22)
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where

Heey = -~ |
H(b) B R e o |
. (1.23)
— 'C - -t :
T = = (1-e )
Now rearranging Y(s) gives
\((A.\ = EE' l:( ‘ ) !
- W\ (2e+b8) vart )
1.24
| b ( )
- ( | e
(e+6D* ¢+ a? ) <
so that, from Laplace transform tables [20],
) =Y () (1.25)
.wh'elre
\ ) < tiin (at £ ) . o l
al s W o (ot + b)Y 4 (@w+b)? +at
(1.26)

() V(t-t) <~ {(x) e”"t"

After some algebra, y(t) may be written as shown by Equations (1.16).
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Example Problem 2

Determine the forced reésponse of a simple supported

beam to the harmonic loading shown in Figure A. 2.
Solution: The equation of motion is
W\'i (. t) 4+ ¢ i(x"t\ + D‘ \X(‘t{‘t\ = L) | (2.1)

where

o (2.2)
{oti= 6 o ot

For this problem, we seek a particular solution to Equation (2. 1) subject

to the boundary conditions

(2.3)
Mot M7
v/"here the bending moment is given by
. ETICHRY
M t)= EL e (2.4)
From modal theory, the desired response is written as’
L&(“.‘t\ = Z ceo‘\ %‘(t) - {2.5)
iz |

where the modé shapes ¢ (x) is computed from the solution to the
g J
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homogeneous equation
. 4 |
TORANPE S b Lk RN (.6)
and qj(t) is the part_icular solution. to
9 - 2 = . 2.
§.00) v agw g (6 v g (1) -y £ () (2.7

If the loading can be expressed as the product f(x,t) = f£(x) f(t),

the generalized force is of the form

L= £ £ (2.8)

where

R
&(1\ = ( £ n{)l.(ﬂ dy (2.9)

The modal participation factor is defined according to

X
F = ‘l"" % _((1\ ‘{".\(\(\C‘(\)ﬁ

'(2;16)
5 .
[}

so that

. , - o
%l({_\ 4 Agjui %j(t) + W %,J(U = (———- I:{(t\ (2.11)

w\ .
3

The quantity T'j may be considered as a measure of the extent to which the
jth mode participates in exciting the structural system. If we interpret the
structure as a system with selectivity characteristics both in space and
frequency, this quantity provides an estimate of the spatial selectivity

of the structural system in affecting a response.
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Upon substituting (2. 5) into Equation (2. 6) with the input

excitationatw =w_,

' (2.12)
L_-D“‘ k:\ G(f':.s(x\ = O :
where .
- 2
D —
(2.13)
t _* = u)l -
“ T I
Thus,

‘Q(x\ = Ceos \-(-ix F D s Kx 4+ B oeothln + F ocuy e x (2.14)
Y .

where C, D, E, and F are constant coefficients with values dependent

upon the boundary conditions.

For the boundar}} conditions of Equation (2. 3) the coefficients
C, E, and F reduce to zero and the frequency equation reduces to the

‘simple transcendental equation

D bki=o |  (2.15)
Since we will not admit the trivial solution D = 0, the frequency equation

_ is satisfied by
kijL-.iTF) [N SO ST I (2.16)

and the system modal (natural) frequencies are given by

(2.17)

o BE (Y’

A
w R
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With the coeff1c1ent D arbitrarily set to anity, the modes shapes ¢ (x)

which correspond to the modal frequen01es wJ are given by'

' o : ) . (2.18)
Q.(r\\l _:\.w.\&}‘;& = sa §TX :
A o .

Let us consider now the partlcular solution to Equation (2. 7).

W1th the above Jth mode shape,

R
“\s: A gti\wt \(ii 5{1 =

o

(2.19)

‘r“rﬁ

S |
-C'LUC\ = {smwt gs.w\ \<$x Ax

By the substitution of these quantities into Equation (2.7), the modal

equation of motion-becomes

v\\k'&.

3

L 4 2 4€D :
SCORIEL TS %_A(t\ + W %s“\: = s wt (2.21)

Note the generalized force points out, the intuitive fact that loadings
distributed antisymmetric with respect to the mid-span of the beam
contribute nothing to the overall response. In other words, the system
acts spatially to accept energy only in the odd-numbered modes; 1t
rejects all contributions with wave numbers that correspond to the even-
numbered modes. By any one of a number of elementary differential

equation methods,

‘é;(i\ = l H. (w)l tin (Lt - 4. \ | (2.22)

\‘\lw \&
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where

\

B riagy, 000 @

‘P; =. fan ™! "gs..%s
AN

From Equation (2.5) with (2. 18) for ¢j(x) and (2. 22) for qj(t),

: ©0
= 4
(&(Y‘t\ - ;:Tr ‘\u_)t l \-l Lg)) S -\T;:t S\M(u&t 4\3 (224)
RANEN)

Since this series is rapidly convergent in j, the higher order terms become
vanishingly small and may be discarded with little error. If the system

function were of the form

H () = -wt Hw) o (2.25)

3

hen

L&(x\t\'—‘ e 2 (:ﬁ\ l“(w)lm 3“ o (.ut-n(;. £ 10 (2. 26)

W T
3-\ 3.$

ind the higher order terms become important for w > w .
J
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Example Problem 3

Estimate the mean square response of é lightly damped, simply
supported beam to a homogeneous rand’om pressure field c'reated by a
speaker excited with bandlimited white noise and directed at normal
incidence to the structure. Assﬁrﬁe a sound pfessﬁre level of 143 db,

a spectral bandwidth 10< w <1110, and the follow.ing beam properties:

- 2 2
m = 1.298 x 10 41b. sec /inch’
w, = 100 rad/sec.
£ = 20 inches

Solution: We seek an approximate value for the mean square response

(3.1)

'cr;cq = SG‘“‘M dw
where
- -! X ’ |
G‘i(.x\ub\ - Z 2 ﬂ‘(x\ Qk(x] H‘\(‘-‘-ﬂ u‘fu&\ C._\ \(‘u.ﬁ (3.2)
Ik ST

EENCRRL $ Qe (3.3)

From the preceeding problem

= s AT | LTl A Y e .
Q;u\ W —'*9‘ 3y S 5
X W - \’\'\»Q . ' (3.4)
Y
1 a
Ry i‘
v



where

The higher modal frequencies are related to wl by

P (3.6)

= =9, w = 16, e
so that a.aZ/w1 4, w /w 9,. 4/m1 16, etc.

A spectral description of this problem now can be constructed
as Figure A.3. The spectrum of the input is a constant over the first
three modal frequencies of the system. From Figure 2.3, we find the j +# k

terms can be ignored so that

We,
2 ] 4 2 R '
c-%(*\ =G, Z ‘Qi(o [ g().(x\ clx] S' \-\i(uo\l dw (3.7)
-k 2 : |

For simple harmonic mode shapes and the use of (2. 88) for the finite integral,

s, () = LG _qjé__ % s X T (3.8)
kY Tt P L s
' [N 3
From Figure 2.4, we letI = 1 for light damping.

J
Now the pressure field in db, per unit width, is related to Go by

SPLULY = a0 leq (f‘,—o)
' (3.9)

pr = G (no-10)

where P, is the rms pressﬁre level 0. 0002 dynes/cnl2 {(or zero db).
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2 - 2
Since 1 dyne/cm = 1.4504 x 10 > 1b/in ",

(veo G, \‘/L )] | (3. 10)

43 db = a0 log
' o { (axio07*) (l.aso4x6°

and

G =2 .54 x 16" W'~ sec (3.11)
(S ’ .

\“1'- rad -

By assuming Qj = 50, we find at the mid-span that

2 ~ W 3.12
c‘i(;o*{\ ~ o.0464% v ( )
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APPENDIX B

We examine the response characteristics of the three

system functions to excitation categorized as a progressive wave

field. The mean square response is determined numerically for all

system functions; it is determined analytically only for the systems
H.(w) and m,wz,H_(u_g).
J JJ

The acceptance function for a plane progressive wave

may be expressed in the form

i

Jik(é} A‘-‘\((f) (( - ('\\:‘ cos Wi ]; for Sf\k\ Q*\c\ evewn,

= o for  (F l, (irk) odd

i

J‘S(M A.A(,z}[|-c—\\“¢ogm@]

(B. 1)

Ai( bE ‘ 24
< v (A7) (47- 1)

it

. .“1 Qﬂn_ _s,\l.

AR

7& = wl

[}

L ees o
e

-+
]
I
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For this acceptance function, it is convenient to express the integral
I i
jk

in terms of the normalized frequency parameter, B. Thus,

8

3 S, \
L T \ A H O 1 (0 een wp] 48

(B.2)

where

INOE ' “
ak Mif“k(# - r,u\ (,5 - rh\ Q}S 4 v&\\ ( L+ "31\

(B. 3)

I
3

bT b = blan i) s

e Jco ('qs'\'l\.k;‘\ ="Q'&*-.\Ai

In order to evaluate this integral, the function A, (ﬁ)HJk(ﬁ)
is expanded by partial fractlons.

Then, Ij can be expressed as the sum
of the three separate integrals,
T = 1‘(\\ I.U.\ .(7,\ (B. 4)
\"3 i\ i 1&\&

Each of these integrals is now evaluated separately. The first integral

L)

T . g S.

. ,\\g( 1\]& (B.5)
S (1+k\(s—k3 e Cosvﬂ[(# D ) f

1h2



so that

1_.(\\= QZ So [H (&3 g | t = (-1) cog .11",8 c()é

e T, (AR Lk A (B. £)
| . 1 1 - (--\};cog-‘u"z6

Now by letting p= B-j in the first integral and P_= B+j in the second integral,

I,“\ - Q’ go ( ' N . . ] _l__’_tii__lk___ . |
sk T’ t, (.U'\f.\(';-lt\ H-\\L('\\ HJ\E ) \ w du . (B.7)

This integral is equal to zero so that I.(l)

- ' : (2)
ko 0. The second integral 1

jk
is given by

Wy R+ S. ( v | Hidl _- Had-kd
Il\g _n_l.to (l*\(\(-\-\‘\ ([t'(‘l\(ﬁo&'n'p][($+k\ (‘A-k\ Af

- 00

(B. 8)

This expression can be reduced to the same form as. the first integral; thus
2

12) = o,

jk

(1)

. (2)
With Ijk. and Ijk both equal to zero,:

sk

.I. :-I(;\ - ngo §[|_ (._\)'3;05 \T)&]. :

{ Aik( '.i\\FR + A_'\\‘Uh\‘R,_ + Aiéhri‘\ ?-l + Ajgrj‘\.k‘kll 4,8 (B !
(fS - ri\\ (#‘Vh) (‘ﬁ* r'u\ (ﬁi-\'h\ '

< 13
i 1



1

by using residue theory and complex integration in the upper half of the

where R, is the residue of ij(ﬁ) at § = rjl' This integral may be evaluated

complex B plane. Since the last two terms in this expression have no poles

in the upper half plane, they contribute nothing to the value of the integral.
Therefore, '

e AR AR

(B. 10)
.nl'r.
Since er is the complex conjugate of o (rjz = r;kl)’
¥ .
A&k(vh\ = Aik(ri\\
(B.11)

and the Ijk integral reduces to

(B. 12)
I_Mi-wﬂ L(Akc,\xp\ Gt e (AR &TR)|
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After much complex adgebra, the results may be expressed for j # k.

NS N
.= . 3 -
I&\c Ty ’Bk\g'b.'\ D Q&k(‘ ( ‘\‘ € ws-n‘c.;\\

(B. 13)

3 ~td:
+ (1) ’ije- 'l Tci]

where
Q;\«: &Cii{bi(acf“" i d +3df) + (cl-echdf 4 “‘sﬂ‘ik
-ad;(e}-d}) Y\iu]

ARG AIRSCEEEAPY R R
+ (di 4 c\k\ '52 k* 1

P L et wad ) sgitseg o qdl 4114,
) (Cf- ‘ tz&z_ ) A:\ Y\lk-l (B. 14).
- {(C?— ectdl +d*)- a(aci=d\d d (¢ d’i\Y\z\l('&‘\\ \H)
{e-aaaddem w8 \:}
Bik: (e- CI\‘Y roa(eh v N (45+c\\,.\_1- 1 (4-;‘\' 4\\34

- 4 3 z Il '* - & - «‘
D= - a(ei-d) e i Dkrw&-:\(cz&—dﬂ\(‘ r

Ny = ek

1h5




For j =k, the integral becomes

1= ng" g(l - (-\SS.cos.jr,d] A;(,&).H-s(,l\ 4P (B.15)
where
| | 4
W s ———— |
" U"Rz’v\z?\ £ Ad0p [ (B.16)
N, =

This integral can be expressed as the sum of three integrals by a partial

fraction expansion of AJ_([.’») Hj(ﬂ); thus

I\= _T_;-'\, x I;ﬂ n 'I..:ﬂ © (B.17)

The first integral is of the form

o _ S, - _'_3 [ R; _. Q.-S ]4 (B'.'18).
L mmmg[‘ e f] A=) (A+)) ,ﬁ o

- 00
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This expression reduces as

i
-co

A TUCUE N (ISTETD NS

The second integral is

: --(z\ . H.Ci) WD - |
co i SN | (B.20)
_ g - WS][ (#-4>° " (,Am‘] F o

so that

i LKL

1—-’(1\— JQSQ u(\[g | = ¢tot MTw A*]

(B.21)

{l

—Q;QT .o ml

By Equation (B. 16),

(3
(.n - X So {:° - (B.22)
! mi (G + 4dg ]

The third integral I( ) = I( ) withj = k; thus the integral
IJ can be determined from Equat10ns (B. 13) and (B.22) eva.luated at j =

1h7



After much agebra,

' 20 .21 v - d,
T= 407G it 1, [Qs (\-(-\\_’e “"‘*m Te)

A . 1. . 2,
Tw e, B, DY

-y ‘P& e—'n'c(; - ‘\\"c&} | (B. 23)

s, £ [
W\’l— ('&l‘ V\"x\ )

\

: .
-\-4&1_\51]

where

Q, = oo el v sdd) - a(ei-ad )it 4]

1Y

Y

Be Al oe e abend) iy 1]

.BS .. AZ V\’-_; | (B. 24)
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The mean square response is then

Y | . . (B. 25)
o) = : '
.&(ﬂ ' Zz‘ﬁG\ fk(x) 14\4\ N )
and for harmonic modes.
2 - S, ) WX
o, (v} — Z et —— I
{ 4 X ! (B. 26)

T \ iTX \ kw
“‘ZL(““ - " Lo
o

We note that Ijk = 0 for j# k and j + k odd. For the numerical integration,

it is convenient to express the integrals Ij and I, in the form

R T (8) df

(B.27)

RO T 44

° N o\/\8

where R™ (B), J..(B) and C_ are as defined in the text.
jk ik _ 1
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For all results, p =1 and K”j = [ = 0.025; Figures B. 1
through B.5 show a normalized form of the response spectral densities
for the system functions Hj(t.o), mjwjz Hj(w) and m‘j wz Hj(w). Tables B-1
and B-2 show the main diagonal contributions (for the first ten modes)
obtained by numerical integration and by an evaluation of the closed
form results, respectively. Similarly, Tables B-3 and B-4 provide
the integral results for j=1,3. . . 9andk =1,2,. . . 9. Figure B. 6,
repeated in the text as Figure 3. 35, displays the mean square response
for all system functions over 0 < x/f =<.5. These results correspond
to the analytical results for the first two systems; the last system

2
m. w Hj(w) was not evaluated in closed form.
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LST

_ ] ] 2
SYST E M IH}(w) y n=1 meJZH(w) 1h:2 mjwzH(W) yN=3 _/
=1, Qj = 0.025 ) : ]
j=1 7.712 7.712 7. 629
j=2 4,204 (-3) 1.076 2. 457 (-1)
j=3 1.043 (-4) . 6844 5,843 (=2)
j= 4 8. 981 (-6) . 5886 2.221 (-2)
3 j=5 1.415 (-6) . 5529 1.047 (-2)
@ -
= j=6 3.176 (-17) . 5335 5,023 (-3)
@
Em j=7 9.099 (-8) . 5245 2.869 (-3)
8 m
~—. |
i=8 3. 085 (-8) .5176 \ 1.701 (-3)
j=9 1.198 (-8) . 5165 1.053 (-3)
j=10 4.143 (-9) .5144 7.291 (-4)
TABLE B-I MAIN DIAGONAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE

(P'ROGR‘ESSIVE WAVE — NUMERICAL INTEGRATION OF INTEGRAND)



8¢t

SYSTEM |H,(w)| ey |m,-w=jHj(w) =2 Iy Hil) n=3
p=1 G =0025
j=1 8.236 8.236
j=2 4,205 (-3) 1.076
j=3 1. 040 (-4) 0. 6826 a
W
|._.
j=4 8. 986 (-6) 0. 5889 g
-
| s
< j=5 1.413 (-6) 0.5519 w
= 5
= j=6 3.178 (=7) 0.5338 Z
a 3
Q.
= i=1 9.085 (-8) 0.5237 o
g & !
'\\o ; |
j=8 3.085 (-8) 0.5175 Zz |
i=9 1.193 (-8) 0.5135
j=10 5.107 (~9) 0.5107

TABLE B-2 MAIN DIAGONAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
(PROGRESSIVE WAVE — CLOSED FORM RESULTS) |



64T

i SYSTEM: M) Hw), = 1,L - 0025 ij‘,-';( (B) dy (BYdp

,j__ | 2 3 4 5 eo 7 - 9.
| |7.7/2 o) 2.272¢3)) O |r¢23¢C4) O |2957(-5)] O |g4es(-c)
2 o 4.20¢ (-3) o -7.42:65) © 9.350(-9) 0 4.779(—8) o
3 o totx(-4)| o |eos2(9)| o |gaeu¢d)| © |-2555(7)
4 o o 898/ ¢) O |-3.39/(r0) 0 -4.210(-9) o
5 o o) 1. #15CL) o) 59820Cr0) o 2.477 €10)
2 o o o) 3./7¢(-7) o 1.247€12) o |
7 o) o) o 9.089¢g)| ©  [t1t114{r0)
81 o o o o |(3.085€8) o
S o o o o 1.198(-8)

TABLE B-3.1 |INTEGRAL. CONTRIBUTIONS TO THE MEAN SQUARE

(PROGRESSIVE WAVE -

NUMERICAL

INTEGRATION

OF

RESPONSE

INTEGRAND)




09T

(PROGRESSIVE WAVE - NUMERICAL

INTEGRATION  OF

INTEGRAND)

SYSTEM: mmwitH (w)H(w), ’g;g_m me‘;.z (B) Jy (B)dp

e 2 3 4 5 60 7 9
17,702 e 0./840 0 0./0/5 ) 7.098 (-2) 5.47¢(-2)
2 /.07¢ o —0. 3040 o 1.969 - 4) o 3.454(-4) o

3 o 0.L84¢ o) 3.065(-¢) O |-1724(3) 0.13¢8

4 o 0.56884 o) ~1125¢4) o) -2.467¢4) ©

5 o 0 |o0.5529 ©  |8972(-4) l223-3 |
6 o o] 0.5335 o) 6.1 (L) o

7 o o o 0.5245 . 255€3)
8 (o o (o) 0.5’17-6- : (®)

9 o o e o |osis

TABLE B-3.2 INTEGRAL  CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE




T9T

OF INTEGRAND)

SYSTEM:  mma H(w) Hiw), chl).ozs fR(;« (7)1
e 2 3 4 5 60 7 8 9
1| 7.4 29 o |227764] O |sest-4)| © lzsues)| O  |secr(-e)
2 0.2457 (o) -1.899 €2) o |rea1¢s) O |-2.797€¢) 0
3 O |s8e¢3(-2) O |-2.757(5) O |-(.221¢5) (o) -/.704(-3)
4 (o) 2.2/2(-2) O |2.887¢s) o -4.2%(72) O
S O O [lo#7(2) O (1408 Cc) o . 5476¢)
6 (o o 5.023(-3) O |1#41(-%) o)
7 o o) /o) 2.849(-3) o 1.088 ¢5) |
8 o o o 1. 7016 3). o
9 o) o 0 O |1053 ¢3)
TABLE B-33 INTEGRAL  CONTRIBUTIONS ~TO THE MEAN SQUARE RESPONSE
(PROGRESSIVE WAVE ~ NUMERICAL INTEGRATION




c9T

SYSTEM: H (@) Hi(w), Z]Z(l),ozs [R‘;L (B) Jjx (B)ap

e | 2 3 4 5 6o 7 8 5
! 8.23¢ o) /502(-3) 0 ¢.4965) 0 8.345 (4) 0 1832 (~¢)
2 ) 4.205¢3) o -7.923(-5) o -5.480(7) o 2.¢620(-9) o

3 o 1040 (- 4) o |-1347(-8) o |-2726¢9) o |-t703¢€7)
4 o) o) 8.98¢ C¢) o -5.40400) o |-2.473(70) o

5 o} o) r 43 (L) o -4.475Cu) o _2.344 (~11)
8 o o) o 3./78 (-7) o |-5.181C12) o

7 o) 0 O 9.0858) o |-¢9c8C3)|
8 o o) o o 3.085(-8)| O

® o o 0 o 1193 (-8)

TABLE B-4! INTEGRAL  CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
(PROGRESSIVE ~ WAVE ~— CLOSED FORM RESULTS)




SYSTEM: mmoju Hlw)Ho), gzéogs foR(?;((ﬁ)ij(ﬁ)dB
] 2 3 4 5 eso 7 9
8326 | o o042 o |402t2)| o |zc0etz)| o |r202C2)
2 o 1.67¢ o |-0.304/ O |4/3c(-4) 0 |r722¢4) o
3 0 0.4824 o ‘-4.814 ¢4 o |-/892¢3)| O -9.04862)
4 o o 0.5889 O |-1794(4) o ~2.014(C#) o)
5| ° | 0 o 0.5519 o |-¢r2(5) © |-9.62/(5)
6 o o) 0 0.5338 o -2.750(5) o
.
7 o o) O |0.5237 O |-1098¢5)
8 o 0 o o 0.5 75 Q
e 0 0 ¢] 0 0.5138
TABLE B-4.2 INTEGRAL  CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
(PROGRESSIVE ~ WAVE CLOSED FORM RESULTS)







APPENDIX C

Shown are numerical values of the integral

(n)
R (p)J_(p)dp
jk jk

where the indices vary as j=1,2,3,. .. 9andk =1,2,3,. . . 9;
the superscript n varies as n = 1, 2,3. The excitations are those for
the reverberant field and turbulence only. For all cases, the system

parameters p=1 and (= 0. 025.
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99T

X SYSTEM: H;(w) H (), 221’025 foR‘i‘,L (B) Jjy (B)dp
e 2 3 4 5 60 7 8 9
| |8.958/ o 1010 (-3) /o) 9.314€5) o 1.874(5S) 0 5.462 (~¢)
2 ¢.094¢2)] © r15¢(s)| o 2.595¢-t)| o ¢5e367) o
3 o 2.423(3) o] 1.312(6) o) 2.723(7) 0 8.297(-8)
4 o) 2.506C4)| DO 1.439 7) o) 3.679 €8) o
5 o o) 4.192¢5) (o) 2.9/5(-8)| O 9.090 (-9)
6 0 o) 989/(-¢)| @ ¢.cq42¢9) o
! (@) o 0 2. 8¢o(-¢) o 2.088C9)
8 o o) Fo) 9.834(7)| o
K 6 o) 0 o 3.808( 7)

TABLE C-L.| INTEGRAL  CONTRIBUTIONS TO THE MEAN SQUARE  RESPONSE

(REVERBERANT FIELD -

NUMERICAL

INTEGRATION OF

INTEGRAND)



19T

SYSTEM:' mmuwiw Hf(w) Hiw), ¢ :(la.ozs fR‘f; () Jix (B)dp
P 2 | 3 4 5 . 7 8 9
8958/ 0 §.094¢2) O L.00362) 0 | 449262 0 | 3.598(2)
o /5.(,04 o) 2.1922) (o} s.380(2) o] 4.301(-2)[ o
j 0 16.020 0 6642 (2) (@) 5294 (-2) 0 ‘ /137 (-2)
o) o /¢.423 (o) 1.778¢2) o 3933(-2)) 0
0 o /6.376 0 4.384C2), O 3.72762)
0 (o) @] 16.¢/3 o] 3.42¢(2) o
6 o 6 1¢.493 O |3.289¢2)
0 o} o) o 1¢.499 o
(o] (o) o) o 16.394
TABLEC-1.2  INTEGRAL  CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
(REVERBERANT FIELD - NUMERICAL INTEGRATION OF INTEGRAND)




89T

SYSTEM '  mme*H(w) H{w), gjz(lj_oz5 Rk (B) Uy (B)dp
[ 2 3 4 5 6 7 8 9
/3./28 o -Sedold) o |-3/2¢(4) o) -3.00/(-¢)| © -2.845(+)
o /6.959 o -¢.420046) o -(.254(4) o) -4.877¢4) o
o 16.697 o -3.7276¢) o -L.8E4) O -7.010(-4)
o) o) /6.591 o -¢.84364) © -201(-4)] o
o o /6.25/ O |6.943(4) o 3‘9'204('4) |
(o] (o} o 16.05¢ o —(.290L 4) O
(o} (o) o) /5675 (o) ~9404(-4)!|
O o [a) o) /5.37/ | o)
o O o | o /4831
TABLEC-I1.3 . INTEGRAL  CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
(REVERBERANT FIELD - NUMERICAL INTEGRATION OF INTEGRAND)




X SYSTEM: Hi(w) H(w) ? : | foR“" (B) Jiy (B)dB3 X g for} ot
] K £;=0025 ; ik jk J = a(B) for | even
] 2 | 3 4 5 | 6 | 7 , 8 | 9
I 1 72.642 (o) 3.862€4) o] j7.¢m ¢s) | (o) l 3.33/¢s) ' (o} '8.742 =¢)
2 o) 7.774-2) (o) /.258(-7) o | 2:731(-4) (o} 1.240(-'6) Q
3 0 /.058 (-2) o ¢.50/(-5) 0 /.288 (-5) 0 4.843(-¢)
| 4 0 0 7.302 (- 4) 0O |5.%0(é) 0 1.914(-¢) 0
2 L5 o) 0 /. 4682(-4) 0 3754 (¢) 0 /.383 (-¢)
5 o 0 ) 2371 (¢-8| 0 6.946(-7) |- 0
7 o) 0 o) 6.5 (-¢) 0 4.33567) .
8 o o o (o] 1.636 (-6) (o]
9 ‘ 0 0 0 o) £.403 (—7)
TABLE C-2.| INTEGRAL  CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
(REVERBERANT FIELD - NUMERICAL INTEGRATION OF FILTER APPROXIMATION)




0LT

K Iy = | ° Jjk = Ji(B) for j odd

SYSTEM: mmuwiw, Hlw)Hlw), §,=0025 ijk (B) Jyc (PIABs g = y () for | even

e ! 2 3 4 5 e0 7 8 9

| |72.¢42 o 3/3/¢2)| o |4938C2)| o s.59t2)| o 5.742(-2)

2 (o .l e T (=g o) £.647 (- 2) (o} 8. 124(-2) O

3 o ¢9. 704 (o) 2.282 o 2.50t o 2.574

4 o o Ccg o 1.714.4 o l.902 o

5 (o) o 59. 60/ o 5.63/ o s5.46¢¢

6 o o o =9.9:3 o 2687 o

’ o o o 37.273 o 4.825

8 o o o o 27. 449 o

0 o o 0 o 25.927

TABLE C-2.2 INTEGRAL CONTRIBUTIONS TO THE MEAN SQUARE. RESPONSE

(REVERBERANT FIELD —- NUMERICAL INTEGRATION OF FILTER APPROXIMATION)




" . Bo= ° - _ ik = % (B) for j odd
SYSTEM: mmu*Hi(@) H(w), ¢ =005 ijk (B) Jj (PIAB7 = (8] for | even
; .
e 1 2 3 4 5 6 7 8 9
| | 2¢.096 o) 3.858 o] 0.7699 o] -0.2229 ) -0.5(54
2 0 23.739 0 /.85 (o) 0.2244 0 -0.3048 (s)
3 o) 70- 9¢¢ ) 0.42¢9 o 9.r83(-2) o ~0.4732
4 0 o 42.80/ (o) /.2¢0 (-2) (o) -0.4/0¢ (o)
5 5 o) o) 52.910 (o) -0.3L49 o -0.441/
6 o o} o 3¢.448 o ~0.3¢/7 o
7 o (o} o) 30. 240 o) ~0.537¢ |
8 0 o 0 o 22.8¢7 o
9 0 o o o) /18.199

TABLE C-23 INTEGRAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE

(REVERBERANT FIELD ~ NUMERICAL INTEGRATION OF FILTER APPROXIMATION)



LT

(REVERBERANT FlELb -~ FILTER APPROXIMATION IN CLOSED FORM)

: Moz ® . g = i(B) for | c;dd
SYSTEM: Hl@) Rdw), [, = 0025 ijk (BY i (BYARS | - 4 () for j even
fem 2 3 4 5 60 7 8 9
| | 12.36/ ) 3,474(_4) o 7.495(-5) o 2./81C-5)|
2 7.758 (-2) o 1-967¢7) o 2.99/(-6) o /.222(-6) ©
3 o loee/(-2) | © 4.0.40 (-5) o /322 (-5) o 4.958(-4)
4 o) 71971 (-4) ) 5.5 (-5) o 1.755¢6)| ©
5 o ° 1. 414¢-9)| © 2115(-6)| © 4.391(-6)
6 o o 2.344¢-5)| © 6.bd42¢7)| o©
7 o o O  |6434¢-6)| o |4265(-1)|
8 © o O |le¢e) o
9 o o o o 6.034(7)
TABLE C-3.I INTEGRAL . CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE




-

€LT

el

[=]

SYSTEM: mmufu} H(6)H(w), ¢ 00z ] Rk (B Jyi (P)aB: j,]: f((ﬁif; j:d:\
e 2 3 4 5 6o 7 8 9 |
I 12.36/ o 2,814¢-2) o 4.694 (2) o 5.237¢2)| © 5.378(-2)
2 19.860 o 1e08(-4) © 5.996(-2)| © 8.332) ©
3 o 69.0/6 o -' 2.349 o 2.670- ° 2,635
4 o 47.168 o /697 o /.840 o
S o o 81.%64 o S 665 o 5.687
6 o o 39.313 e 3.62.@ o
! © o © 31017 o e.Tg
8 °© o © 27450 | o
9 o - o o 25.913

TABLEC-3.2 INTEGRAL  CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE

(REVERBERANT FIELD — FILTER APPROXIMATION IN CLOSED FORM)




i SYSTEM: mmw'H(@) Hw), ;025 ofR(fi (P) Jj (P b; ji:j((fa)) for | o
. I 2 3 4 5 6 7 8. 9
L} 19247 0 0.5789 o O.1214 0 3.406(-2) 0 1.270(-2)
2 0 24./06 o 0.2143 0 5.053(-2) o 1. 654(-2) o)
3 o 20.12¢ 0 5.426(-2) 0 rs6/(-2)| o 5 8/7(-3)
s o o |47.832 o | 1497¢-2)| o |asss(-3)| o
3|5 o 0 52.998 o co82(-3)| o |1872(-3)
6 o) o ) 30594 0 4.025(-3) o
7 o) 0 o 30.82/ o 3.488(-3)
8 o) o) o o 23.5¢8 o
9 o o 0 e /9.253
TABLE C—33 INTEGRAL . CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
(REVERBERANT FIELD — FILTER APPROXIMATION IN CLOSED  FORM)




IR

(TURBULENCE

NUMERICAL

INTEGRATION

TO THE MEAN SQUARE

OF INTEGRAND) -

p=1, 6= o.oz.s ©
SYSTEM: Hl@) H{), Y, =30 ofR”j’k (8) Jj(P)dB

e | 2 3 4 5 6 7 8 9
3.037 0 7.432(-5) 6] 7.052 (-¢) 0 /3¢2 (-¢) 0 3.895€7)

0 2.329(2)] O 2.0¢4 (-¢) o) 6204 (-7) 0 1.984(-7) o)
0 7.038(-¢) O F97(-7) O |-4558(8) 0 -1.122(-8)

o o |swits) o |-rws8) O |2920€9) o
o o 7.066(¢) o 7.4 70(-/0) o 1.414(-10)

o} o} o 1.397(-¢) o 2.060 (/1) o)
o o) o) 3.453(—7) o 2.535€11)

d o o o /.170'(-.7_). ol
o 0 pe o 4.310(8)

TABLEC-4.1  INTEGRAL  CONTRIBUTIONS RESPONSE



9LT

OF

p=1,5,=0025 o -
SYSTEM: mmuiw Hlw)Hlw), = 50 JR‘},L (B) Jjx (P)dp

e 2 3 4 5 6 7 8 9
1| 3.037 o (.03¢¢3)] O 2.409 (-3) 0 s.074(3) O 2.502(-3)
2 5.94/ o 831¢3) 0 12.99/ (-3) O |12.99¢¢3) O

3 o) 4.607 0 -7.07/(- 3) (o) -8.859(-3) o} -5.959 (- 3)
4 o 3.878 o -1.722(-3) 0 - 3.050(-3) O

5 o o} 2.788 o -2.141 (- 3) o -0.560(3)
6 o 0 2.337 o, 0.111(=3) o

7 o o o 2./06 o 1.187(-3) |
8 o o 0 /.9¢ 2- e

9 o o o o 1.85¢

TABLE C-4.2  INTEGRAL  CONTRIBUTIONS ~ TO THE MEAN SQUARE RESPONSE
(TURBULENCE - NUMERICAL  INTEGRATION INTEGRAND)




LLT

M= I,Cj =0.025

o

SYSTEM: mm*H{w) H{w), =30 JR‘}L (B)‘ij(ﬁ)dﬁ
e | 2 3 4 5 6 7 8 9
3.459 O |r28063)| O |jrzeew)| O |2wots)| o |s2mte)
© ¢.028 o 8.093(-4) o) 2.355(-4) O | 7.505¢S) 0
o ;_283 o |-¢22%4)| o - 4.800 (-4) S -1.853(5)
o o 3.502 © -2.576(-4) © |-4273(4) ©
o o 2.243 O |-8¢51t8) O |-5¢14(-5)
o o o /.807 o |[-3.222¢8) O
o o o) 1.5¢/ O  |-1.594(5)
o O (0] o / 399. (u]
o o © o r2¢4 |
TABLE C-43  INTEGRAL  CONTRIBUTIONS TO THE MEAN SQUARE  RESPONSE
(TURBULENCE  — NUMERICAL INTEGRATION OF .INTEGRA.ND_)-



QLT

p=1, §;=0.025 ) . '
SYSTEM: o) ), gy 250 Oijk(ﬁ)J,_(ﬂ)dﬁ

- | 2 3 4 5 6 7 8 9
3.692 o 2.239(-+) O |3.8%(-s) o) 1072 (-8)] O ' |3.95/(-¢)

o 4.427(-2) o 5.8875) O |/.328(5) O |43nle) o
o 2./151€3) o |/#u2(8) o 3.32¢ €¢) o) 1.425C¢)

o o 1.822(-4)| o© 3.3/18€¢) o loe3(-¢)) ©
o) | o 2.29¢(-s)] o© & 300 (7) O |3.039(7)

o o o 4.245(-¢) o) 2.5¢.(-7)| o©
o o o 9.83/ (-7) o 8.783(-8)

o o o o 2.825(;7) o
o o o o 9.322(-8)

TABLE C-5. INTEGRAL  CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE

(TURBULENCE — NUMERICAL INTEGRATION OF FILTER - APPROXIMATION)




6LT

OF FILTER -

. ©=l, §l= 0.025 © '
SYSTEM: mmiwH(w)H(w), 4= 30 JR‘;L (B) J«(B)dB
e l 2 3 4 5 6 7 8 9
3.592 o 1.8/5 (-2) o) 2.430(-2) o 2.583(-2) o 2.593(-2)
(4] /1.238 o 0- 2414 (o] 0.2755 O 0.282% 0
o 14.19¢ 6 0.7/58 o 0.7482 0 0.6%70
o o 12.039 (o) /162 0 115 /)
0 O 9./07 0O /. 246 o ].24¢
(o) o) o 7.130 (0] /362 o
o o o 5.667 o) /383
o o (0] 0 4.708 | o
o) o e o 4.03/
TABLEC-5.2  INTEGRAL  CONTRIBUTIONS ~TO THE MEAN SQUARE RESPONSE
| (TURBULENCE - NUMERICAL  INTEGRATION APPROXIMATION )



gt

- . M=l zj= 0025 ® - _
SYSTEM: mmw*H(w) H{w), %b=30 OjRjk(ﬁ)J:(B)dB _
e 1 2 3 4 5 6 7 8 9
4.772 0 |05389 0 | ¢.579(-2) O |-4.48%2)] o |-83/9¢2)
o /2.073 0 0.1458 O |[-3.3¢3C2) O |-t.l24(-2) o
o] 13.977 0 0./079 o -4.1m€E2) o |-8.958(2)
o) 0 /1.109 0 4.81262) o .7.401 (-2) 0
o] o 2.922 o -6.43/1(-2) Q -9.258¢2)
o 0 o 5.7¢0 o |-5.023(2) o
[0} (o) o 4.250 o |-7.38(€2)
0 o 0 o 3.24-9- . 0o
o 0 0 o 2.514
TABLEC-53  INTEGRAL ~ CONTRIBUTIONS ~TO THE MEAN SQUARE RESPONSE
(TURBULENCE - NUMERICAL INTEGRATION OF FILTER  APPROXIMATION)




111 I |0

TeT

I, T, = 0025

SYSTEM: H{®) Hw), #z%: 30 ofnR‘}’k (ﬁ)ld.-,_(ﬁ)dB.

j— i 2 3 4 5 6 7 8 9
3483 o |177(-4)| o |3280-s)] O |9035(<%)| O | 3347(-t)

0 |44/0(-2) o | £828(5) o r30(-5)| O 4.247(~¢) 0
0 2n06(-3)| o |1¢32(-5)] o© 2.895(-6) O | le42(-0) |
o ) 1.807(-4) 0 32.247(-¢) 0 /1.039(-¢) | 0 |
0] 0 2.317(-s) (o] 8.302(-7) ‘0 | 3._030(-1)

0 o o) 4177(-¢)| o 2.494(-7)|. o
o | o) ] 9.7273(-17) 0 8.¢47(-8)

e 0 0 o |2792¢-1)| o
o 0 0 0 9.323(-8)

TABLE C-6.1 INTEGRAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
(TURBULENCE - FILTER APPROXIMATION IN CLOSED FORM)



28T

(TURBULENCE =

FILTER APPROXIMATION

p=1, 6= o..ozs ) :
SYSTEM: mmiw} Hw)Hlw), %:— 30 JR‘}L (B) Jz(B)dB
e 1 2 3 4 5 6 7 8 9
3.483 o /-431(-2) o) 2.050(-2) o 2.1e9(-2) o 2.156 (-2)
(o) 11.289 (o) 0.2347 o) 0.215 o 0.2783 o
o /4.175 o 0. 7é &0 o 0.7576 0 0.766/
o o //.842 o) 1.077 (o) /.089 o
o o .08/ o /. 246 o | 1242
o o (o} 7.0/6 o /.324 | o
o o o 5634 | © 1362
o o (o] o 4.43? ’ o
o) o) o o 4.013
TABLEC-62  INTEGRAL CONTRIBUTIONS ~ TO THE MEAN SQUARE RESPONSE

IN CLOSED FORM)




K

€91

i SYSTEM: mmu'Hi(w) Hw), J%E 30 0/;]k (F) u(p)ap |
e | 2 3 4 5 6 7 8. 9 '
I 4.82/ o 4/87 o 1767 | 0 0.3502 4] 1 0.7329

2 &) /2.080 ) 2.379 0 0.8334 0 0.3049 | 0 i
3 o /3.987 | o 0.745¢ o 0.2225 o ;8.438('2) f
4 o | 0 /1.024 o | 0.4/%0 0 | 0.2050 o

5 o 0 | 7.982 o 12932(-2) o | 2.216(-2) |
6 o o) | o 5777 o) 0.2¢84 0

7 o) o) o 4 333 ) 2.954(-2)

8 (o) o) o o 3. 352 )

9 @ o o O | 2.¢e3

TABLE C-63 INTEGRAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE
(TURBULENCE — FILTER APPROXIMATION IN CLOSED FORM)






APPENDIX D

TABLE OF SELECTED INTEGRALS

This table of integrals is a partial list of integrals
encountered in using a frequency domain approach to determine the
mean square response of single degree of freedom systems to random
excitation. In most instances, the integrand is written in terms of a
basic system frequency response function, H(w), and a spectral density

function, S(w), both defined as follows:

H(w) = basic system frequency response function

H(w) 1

2 2
(w = ) +1i200 w
o o

I _ 1
R PR N O
)
s, = a +1ib =—s2
a = 4] ]. - 4.2
o
b = wog
wz = a +b2
o

185



*®
H (w) conjugate of H(w)

2 % 1
H(w) = = H(w H (w) = :
( 2 2) (wZ 2)
w =8, - s,
Hj(w) = system frequency response function at the modal

frequency wj

1
H(w) =
J (o) +iztww
J J ]
1
H(w) = -
J (w—sjl) (w-sjz)
+ib *
S. = a. 1 .= =85,
jl j J j2
a,. = w V1 - Q.Z
J J J
b = w.
J JéJ
w_z = a_2+b2
J J J

186



S(w) = spectral density function

a(P2+az+w2)

3 T4
= P+ i = *
S3 = 1 = - 54
[0}
1 ~alT ;
Note: S(w)y = f <e @l Icos pT\ele dr
2m A /
U(t) = unit step function
0 t< O
U(t) = 1/2 t=0
1 t>0
§(t) = unit impulse function, defined by the integral

f ot -t ) £(t)dt = £(t )

187
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TABLE OF INTEGRALS

1)

(3)

(4)

(5)

- Lot is.t
f - gw = 2mi 1ty
W - S
-0 1
= 2m e
t - 1
| (o-s) (@ —s)  (w-s,) (w -/él)J
w 2 r .
t
f ro(w -w) + '1 elwt dw
- (w ~w)
o] . 2
J Hw) et dw = ;T e Y sin at U(L)
-

(cos at + sin a t)U(t)

1
iwt !
e dw =

U(t)

= 2rH(w) [:elwt-e-bt(cos at 4 bt+iw

- +
~2miH{w) e bt(cos at + btiw

sin at) U(t)

-1
sin at)J U(t)
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(6)

(7)

(8)

(9)

(10)

(49

1§

fm ‘H(u)i % dw

[ lta -

j (b2 - a.2 + wz) ,H(w), 2 dw

[ e -

f H(w+ ) " (w- w) dw

LU
Zb

[ (Ccos wt+—:— D sin wt) lH(w)‘Z dw =

2 3p2)

m

> e-bt [a C cos at+ (bC +
Zabu)0 '

™

7
2(b +iw ) (& - +i2bw )
e (0] e e

2

w

O

a

2

D) sin at]_ U(t)
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2 2.
2b” -2’ - w4y p (7 -u +i2bw)
e e e

%
Hwt w)H (w-w )do =
EA 22 e e 2 b +iw) (wz 2 + iZbw )
e o e e

@ als
(13) /(C cos wt + —:—— D sinwt) H(w + we) H(w - we) dw
-

t+ (b +i sinat
i b+ iwe)t a cosa ( we)

D
e —————————— — . +
® 2ab +iw) © L-sinat+C >
e w. ~u *T1i2bw
o e e

( m
2 2
- +(b -,
. 2 (b -a) [a (b a)] beb '
(14) ['H(w+1a)’ dow = 4 0 o =b
-0 ‘ ™
e>b
2
2 (o -Db) [a2+(a/..-b) ]
\
r [~ -
v b2+a2-ba
2 2
~ 2 2 2 az(b~a) a +(b-o0) a<b
s [L—mate te |t + i) [* a0 = o _ a=b
- ) m rb2+az-ba o>
2
2 (e-b) | 2+ (a-1)
x L
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w0
(16) f(C cos wt+ — D sin wt) 'H(w+ i) 2 dw
- a
-
-(b - o)t 2 2
Te 5 > C(cos at + b;a sin at) + D a ¥ (bz -2) sin at| b
Z(b-a)[a +(b—a)] o a
= < @ o= b

Tre(b - alt

_ 2(a - b) [az%(a-b)z]

2 2
C(cos at+g-;—b sin at) + D a_t(a-b)

5 sin at o>b
a

——)

@
2 a
17 j = —_—
(17) J S{w) |H(w)| dw ™ R1 + R3 for s, # s,
2
o (S]. + a/z + pz)
where: R1 = Re > >

2 2
a sy (s1 -s3) (s1 - s4)

R_=Re 1

2

3 2 2 2
(s3 - sl) (s3 -8

2

5)
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w.2 2 2 2 2 2 2
b -a +w 2 b -a +P -« 2P
(18) / > S(w) 'H(w)l dw = -X1+ 5 R3 - X3 for slqé 5,
© a a a
Q/(sl2 + 0/2 + PZ)
where: X1 = Im > ( > 52') ( > 2)
a Sl S1 - 3 Sl - S4
X =1 s 1 See (17) for R
37 62 L6 (62 - 8 {ee e 3]
/ °3 751 37 %
- W 2 bt b
(19) /(C cos wt + = D sinwt) S(v) 'H(w) dw = % e” R, [(c+ — D) cos at+ D sin at]
fas}

+X1 [D cos at - (C+-E— D) sin at] +e"0/t R3 [(C+?QD) cos pt+—:—D sin th
1 3

+X3[£-Dcospt-(c+—§—D)sinpt] for s, # s

[See (17), (18) for R}, R, X, X3]
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For sl=s3(

(21) and (22 respectively.

a = P and @=D) the integrals (17), (18) and (19) reduce to equations (20,

2
© b (w + w )
(20) f - lH(w)' do = 24 32
- 8b w
2 2
-a” +
(21) b(b a w) (o +u)),H )|4 _ b
2 2 4
T3 2a w
0
b 2 2 4 1 bt | ¢ [a% +3b
(22) - f(C cos wt + =D sin wt) (v + v ,H(w)l dw= e’ - (E———' + bt) cos at
™ a o 2 2 2
- 2w b w
0 o
2
b= 2% i o D (1 + bt) sinat
ab ) > 5 ) sin
w a b
o
( 4 4 (b1 + by)
23 [ H()H_()do = j
j 2 2.2 2 4
- - + 2
@ (aj ak) (aj k) (b + b ) + (bj + bk)
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w

o [

-~ % tgq

HJ(w) Hi(w) dw

2 2 2 2 2 2
- - C -bo o+
4 bj[a. a, (b.+b)]+(b.+b)(a b, q)

wz - 2qu + q2 (wjz + ijq + qz) l:(ajz -

J
2.2

k) +2(a +a)(b +b) +(bj+bk)4]

1

+
2 2
4q (wk + Zbkq +q)
2 2 2 2
f‘” . q(a” - 36" +q°) + 2bu’ |
(25) lH(w I dw =
- ooz + q waiq w: + 2(a2 - b2)q2 +q4J
©® 2 2 /
5 ‘-b.ak+ b2y + by (b +by) ]
(26) jw H,(w)Hk(w) dw = 4w > 2 2 y
- j (aJ- a) +2( +a )(b +b ) + (bj +b) ]
2 2
 , y kb(a -b)+a(b -b)Za b(b +bb )-b (b+b)(b+2b)
(27) / SH(0) H(w)do = 47 id L
~@ (J a,) +2( +a)(b +b) +(bj+bk)
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(28)

© 2
(]

H.(w) H (w)dw
-~ W +2F’2q t q ) K

4 4[2 2 Zjl 2 . 2.,4 4 4 2
b.(w, - a, -a, ~(b.4+b +(b.+b a.-b ) {w.+q )+2 w,
. _ 4 J(*Lq)J k(_]k) (Jk)(JJ)(Jq)“jp
c 2 2.2 2 2 2 4
; - +
j (aj ak) Z(aj +ak)(bj +bk) +(bj +bk)
m{c+d)
* 2 2 2 2
¢ - + +
2cd [aj,+(bj c ~-d) ak (bk c+d)]
_ m{c - d)
B 2 2 2 2
- (- -
2cd [aj+(bj c +d) ak+.bkrc d):,
where:
c=1/2 %+
2 2
d =1/2@® -q)

2
€.= (az. - bz.)(az. -b,+2 2) - 4a2.b2. + q4]2 +16 az,bz.(az.' - bz_' +PZ)2
J J b J J JJ ] J
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4
29) [cn wZ lH(w) 2 do = ™ (a2-3b2+2P2) wg 4 (az-b2) qf
AP S wai Eaz_bz)(az_bzﬂpz)_4a2bz+q4]z 1622022 oact)?
+ m(C +d) n(c-d)

4cd [wj + 2(a% b2 (ctd)® + (c+d)4] 4cd [wi + 2(a®-b%) (e -d)2+(c-d)4]

[For € and d see (28) ]

o 4 o [z odiq? | uen, [ saamdie?] 2o el
(30) f 5 2 () Hylw) de= dm CREX J ZJ 2 7 AT RENERT:
- W4 (a.-a ) +2{(a . +a ){(b.+b, ) +{(b.+b,) w,+2(a . -b)g +
4 [Jk Jka)(JkJJJqq
3
t T2 2 T 2 2
[aj + (bj—q) ][ak + (bk-f-q) ]
4 o+ (a2 - 3b%) ¢ + 2bg
(31) f W tH(w)I 240 = = °
R O

(o]
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© 6 ,
o )

(32) H, (v) H (w) dw
_c{w4:+:f:pzw+q4 . k

72 4 2
‘ [w§+2 w%(a .<2.) P2+ {a. =10 az. b, + Sb%)q4 bk‘*’_.z + 8,+4w4f(a2.-b2.)P2
L i3 j i j J I R I
_ 4
S
2 2.2 2 4 2 44,2 2 .2 4
+ (3a.-b.)(a.-3b)) ]b.w -2bw |wP +(a,-b)) ]
i i Jq j k iJld j Jq
2 5
T(C +d) m (¢ -d)

+ -
2 2 2 2 2 2172 2
4cd [aj + (bj- c=d) ] [ak + (bk+ c+d) ] 4cd [aj+(bj-c+d) ] lak+(bk+c -d) ]

where:
2 2.2 2 2 2 4
= (a’, - +2{a +(b,+
5jk (aj ak) 2{a j+ak)(bj+bk) (bj bk)

[For c, d and Cj see (28)]
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0L6T ‘A513ueT-YSYN

099T=-¥D ee

h

wi + Zwi (a2 -sz) P2 + (a4 -10a2b2+5b4)q4

2 _
lH(a)l dw = 2b_

r(ctd)®

(

L

2 2.2 4]2 2.2, 2 .2 4,22

[(az-bz)(az-b +292)—4a b +q +16a" b (a =b +P)

e -d)°

4cd [a2+(b-c-d)2] [a2+(b+c-+d)2J

aca [aPrp-ot)?] [P+t c-a)?)

-




